A novel viral responsive protein, namely hemocyte homeostasis-associated protein (HHAP), was characterized for its role in the response of shrimp to white spot syndrome virus infection. The full-length cDNAs of HHAP from the black tiger shrimp (PmHHAP), Penaeus monodon, and the fresh water crayfish (PlHHAP), Pacifastacus leniusculus, were obtained and showed high sequence identity to a hypothetical protein from various organisms, with the highest identity to the hypothetical protein TcasGA2_TC006773 from the red flour beetle, Tribolium castaneum (54% amino acid sequence identity). Transcripts of PmHHAP were expressed in various shrimp tissues with the highest expression in hematopoietic tissue, whereas the transcripts of PlHHAP were found in the hematopoietic and nerve tissues. Upon white spot syndrome virus infection, a high upregulation level of shrimp hemocytic HHAP mRNA and protein was observed by real-time reverse transcription-PCR and immunofluorescence microscopy, respectively. Gene silencing of PmHHAP by RNA interference resulted in a significant decrease in the number of circulating hemocytes and 100% shrimp mortality within 30 h of the double-stranded PmHHAP RNA injection (but not in control shrimp), indicating that HHAP is essential for shrimp survival. Interestingly, severe damage of hemocytes was observed in vivo in the PmHHAP knockdown shrimp and in vitro in shrimp primary hemocyte cell culture, suggesting that PmHHAP plays an important role in hemocyte homeostasis. Thus, it is speculated that the up-regulation of PmHHAP is an important mechanism to control circulating hemocyte levels in crustaceans during viral infection.
Suppression subtractive hybridization of Penaeus monodon hemocytes challenged with white spot syndrome virus (WSSV) has identified the viral responsive gene, PmVRP15, as the highest up-regulated gene ever reported in shrimps. Expression analysis by quantitative real time RT-PCR revealed 9410–fold up-regulated level at 48 h post WSSV injection. Tissue distribution analysis showed that PmVRP15 transcript was mainly expressed in the hemocytes of shrimp. The full-length cDNA of PmVRP15 transcript was obtained and showed no significant similarity to any known gene in the GenBank database. The predicted open reading frame of PmVRP15 encodes for a deduced 137 amino acid protein containing a putative transmembrane helix. Immunofluorescent localization of the PmVRP15 protein revealed it accumulated around the nuclear membrane in all three types of shrimp hemocytes and that the protein was highly up-regulated in WSSV-infected shrimps. Double-stranded RNA interference-mediated gene silencing of PmVRP15 in P. monodon significantly decreased WSSV propagation compared to the control shrimps (injected with GFP dsRNA). The significant decrease in cumulative mortality rate of WSSV-infected shrimp following PmVRP15 knockdown was observed. These results suggest that PmVRP15 is likely to be a nuclear membrane protein and that it acts as a part of WSSV propagation pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.