Parkinson's disease (PD) is a medical condition that has been known since ancient times. It is the second most common neurodegenerative disorder affecting approximately 1% of the population over 50 years. It is characterized by both motor and non-motor symptoms. Most of PD cases are sporadic while 5-10% cases are familial. Environment factors such as exposure to pesticides, herbicides and other heavy metals are expected to be the main cause of sporadic form of the disease. Mutation of the susceptible genes such as SNCA, PINK1, PARKIN, DJ1, and others are considered to be the main cause of the familial form of disease. Drosophila offers many advantages for studying human neurodegenerative diseases and their underlying molecular and cellular pathology. Shorter life span; large number of progeny; conserved molecular mechanism(s) among fly, mice and human; availability of many techniques, and tools to manipulate gene expression makes drosophila a potential model system to understand the pathology associated with PD and to unravel underlying molecular mechanism(s) responsible for dopaminergic neurodegeneration in PD-understanding of which will be of potential assistance to develop therapeutic strategies to PD. In the present review, we made an effort to discuss the contribution of fly model to understand pathophysiology of PD, in understanding the biological functions of genes implicated in PD; to understand the gene-environment interaction in PD; and validation of clues that are generated through genome-wide association studies (GWAS) in human through fly; further to screen and develop potential therapeutic molecules for PD. In nutshell, fly has been a great model system which has immensely contributed to the biomedical research relating to understand and addressing the pathology of human neurological diseases in general and PD in particular.