“…Previous works showed a similarity in the strength and stiffness trend for 3D printed composite parts [39,40]. For example, in a recent study on hemp hurd/PLA filament, while an increase in the volume fraction of the fiber improved the part stiffness, it was associated with a larger quantity of voids, which led to lower tensile and flexural strength for the 3D printed samples [41]. In another study, 3D printed graphene-based ABS parts featured lower tensile strength and ductility as compared to virgin ABS samples [42].…”
This research validates the viability of a recycling and reusing process for end-of-life glass fiber reinforced wind turbine blades. Short glass fibers from scrap turbine blades are reclaimed and mixed with polylactic acid (PLA) through a double extrusion process to produce composite feedstock with recycled glass fibers for fused filament fabrication (FFF) 3D printing. Reinforced filaments with different fiber contents, as high as 25% by weight, are extruded and used to 3D print tensile specimens per ASTM D638-14. For 25 wt% reinforcement, the samples showed up to 74% increase in specific stiffness compared to pure PLA samples, while there was a reduction of 42% and 65% in specific tensile strength and failure strain, respectively. To capture the level of impregnation of the non-pyrolyzed recycled fibers and PLA, samples made from reinforced filaments with virgin and recycled fibers are fabricated and assessed in terms of mechanical properties and interface. For the composite specimens out of reinforced PLA with recycled glass fibers, it was found that the specific modulus and tensile strength are respectively 18% and 19% higher than those of samples reinforced with virgin glass fibers. The cause for this observation is mainly attributed to the fact that the surface of recycled fibers is partially covered with epoxy particles, a phenomenon that allows for favorable interactions between the molecules of PLA and epoxy, thus improving the interface bonding between the fibers and PLA.
“…Previous works showed a similarity in the strength and stiffness trend for 3D printed composite parts [39,40]. For example, in a recent study on hemp hurd/PLA filament, while an increase in the volume fraction of the fiber improved the part stiffness, it was associated with a larger quantity of voids, which led to lower tensile and flexural strength for the 3D printed samples [41]. In another study, 3D printed graphene-based ABS parts featured lower tensile strength and ductility as compared to virgin ABS samples [42].…”
This research validates the viability of a recycling and reusing process for end-of-life glass fiber reinforced wind turbine blades. Short glass fibers from scrap turbine blades are reclaimed and mixed with polylactic acid (PLA) through a double extrusion process to produce composite feedstock with recycled glass fibers for fused filament fabrication (FFF) 3D printing. Reinforced filaments with different fiber contents, as high as 25% by weight, are extruded and used to 3D print tensile specimens per ASTM D638-14. For 25 wt% reinforcement, the samples showed up to 74% increase in specific stiffness compared to pure PLA samples, while there was a reduction of 42% and 65% in specific tensile strength and failure strain, respectively. To capture the level of impregnation of the non-pyrolyzed recycled fibers and PLA, samples made from reinforced filaments with virgin and recycled fibers are fabricated and assessed in terms of mechanical properties and interface. For the composite specimens out of reinforced PLA with recycled glass fibers, it was found that the specific modulus and tensile strength are respectively 18% and 19% higher than those of samples reinforced with virgin glass fibers. The cause for this observation is mainly attributed to the fact that the surface of recycled fibers is partially covered with epoxy particles, a phenomenon that allows for favorable interactions between the molecules of PLA and epoxy, thus improving the interface bonding between the fibers and PLA.
“…Another cellulose-based derivative, industrial hemp hurd (HH), is a lignocellulose byproduct of the cannabis industry. HH contains 18–24% hemicellulose, 21–24% lignin, and 48% cellulose [ 41 ]. Xiao et al introduced HH into PLA in the presence of toughening agent poly(butylene adipate-co-terephthalate) (PBAT) and interfacial modifier ethylene-methyl acrylate-glycidyl methacrylate (EGMA) terpolymer.…”
Section: Cellulose-based Additivesmentioning
confidence: 99%
“…The PLA/HH nanocomposites also showed increased shear-thinning behavior with increasing HH loading, which assists in 3D printability. Storage and loss moduli also increased with increasing HH content, especially at low frequencies, due to inhibition of chain mobility [ 41 ]. Contrastingly, the tanδ and angular frequency decreased with increasing HH loading.…”
3D printing by fused deposition modelling (FDM) enables rapid prototyping and fabrication of parts with complex geometries. Unfortunately, most materials suitable for FDM 3D printing are non-degradable, petroleum-based polymers. The current ecological crisis caused by plastic waste has produced great interest in biodegradable materials for many applications, including 3D printing. Poly(lactic acid) (PLA), in particular, has been extensively investigated for FDM applications. However, most biodegradable polymers, including PLA, have insufficient mechanical properties for many applications. One approach to overcoming this challenge is to introduce additives that enhance the mechanical properties of PLA while maintaining FDM 3D printability. This review focuses on PLA-based nanocomposites with cellulose, metal-based nanoparticles, continuous fibers, carbon-based nanoparticles, or other additives. These additives impact both the physical properties and printability of the resulting nanocomposites. We also detail the optimal conditions for using these materials in FDM 3D printing. These approaches demonstrate the promise of developing nanocomposites that are both biodegradable and mechanically robust.
Current environmental concerns have led to a search of more environmentally friendly manufacturing methods; thus, natural fibers have gained attention in the 3D printing industry to be used as bio-filters along with thermoplastics. The utilization of natural fibers is very convenient as they are easily available, cost-effective, eco-friendly, and biodegradable. Using natural fibers rather than synthetic fibers in the production of the 3D printing filaments will reduce gas emissions associated with the production of the synthetic fibers that would add to the current pollution problem. As a matter of fact, natural fibers have a reinforcing effect on plastics. This review analyzes how the properties of the different polymers vary when natural fibers processed to produce filaments for 3D Printing are added. The results of using natural fibers for 3D Printing are presented in this study and appeared to be satisfactory, while a few studies have reported some issues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.