This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
a b s t r a c tFlexural creep behavior of nylon 6/6 (NY66)e and polypropylene (PP)e based long fiber (l/d ¼ 2000À10 000) thermoplastic (LFT) composites was investigated as a function of ultraviolet irradiation and moisture absorption. Extrusion/compression-molded panels were prepared according to ASTM D-2990 and conditioned according to ASTM D-618. NY66 and PP LFTs were characterized using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier-transform infrared (FTIR) spectroscopy in the unexposed condition, and as-exposed to 253.7 nm UV radiation. The creep compliance of PP LFT increased with increasing UV exposure, whereas the creep compliance of NY66 LFT showed a moderate decrease with increasing UV exposure. Moisture absorption experiments were performed in boiling water until saturation on NY66 and its LFT composites. Characterization of desorbed moisture absorption specimens suggested slight variation in the structure, and an analysis of creep compliances showed minimal changes as compared to the dry/unexposed specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.