Person re-identification has become an essential application within computer vision due to its ability to match the same person over non-overlapping cameras. However, it is a challenging task because of the broad view of cameras with a large number of pedestrians appearing with various poses. As a result, various approaches of supervised model learning have been utilized to locate and identify a person based on the given input. Nevertheless, several of these approaches perform worse than expected in retrieving the right person in real-time over multiple CCTVs/camera views. This is due to inaccurate segmentation of the person, leading to incorrect classification. This paper proposes an efficient and real-time person re-identification system, named ReID-DeePNet system. It is based on fusing the matching scores generated by two different deep learning models, convolutional neural network and deep belief network, to extract discriminative feature representations from the pedestrian image. Initially, a segmentation procedure was developed based on merging the advantages of the Mask R-CNN and GrabCut algorithm to tackle the adverse effects caused by background clutter. Afterward, the two different deep learning models extracted discriminative feature representations from the pedestrian segmented image, and their matching scores were fused to make the final decision. Several extensive experiments were conducted, using three large-scale and challenging person re-identification datasets: Market-1501, CUHK03, and P-DESTRE. The ReID-DeePNet system achieved new state-of-the-art Rank-1 and mAP values on these three challenging ReID datasets.