The Internet of vehicles is an essential component for building smart cities that can improve traffic safety and provide multimedia entertainment services. The cognitive radio–enabled Internet of vehicles was proposed to resolve the conflict between the increasing demand of Internet of vehicles applications and the limited spectrum resources. The multi-hop transmission is one of the most important issues in cognitive radio–enabled Internet of vehicles networks. Nevertheless, most existing forwarding solutions designed for the cognitive radio–enabled Internet of vehicles did not consider the urban expressway scenario, where primary base stations are densely installed with small coverage areas. In this case, it is difficult to ensure that the sender and the receiver of the same cognitive radio link have similar channel availability statistics, which makes cognitive radio links more likely to be interrupted. To address this challenge, we develop a multi-hop forwarding scheme to minimize the end-to-end delay for such networks. We first formulate the delay minimization problem as a non-linear integer optimization problem. Then, we propose an approach to select the relay candidates by jointly considering the high mobility of vehicles and the unique cognitive radio spectrum usage distributions in urban expressway scenarios. Finally, we propose the low-latency forwarding strategies by considering the channel availability and the delay cost of different situations of relay candidates. Simulations show the advantages of our proposed scheme, compared with state-of-art methods.