With the advancement in technology and inception of smart vehicles and smart cities, every vehicle can communicate with the other vehicles either directly or through ad-hoc networks. Therefore, such platforms can be utilized to disseminate time-critical information. However, in an ad-hoc situation, information coverage can be restricted in situations, where no relay vehicle is available. Moreover, the critical information must be delivered within a specific period of time; therefore, timely message dissemination is extremely important. The existing data dissemination techniques in VANETs generate a large number of messages through techniques such as broadcast or partial broadcast. Thus, the techniques based on broadcast schemes can cause congestion as all the recipients re-broadcast the message and vehicles receive multiple copies of same messages. Further, re-broadcast can degrade the coverage delivery ratio due to channel congestion. Moreover, the traditional cluster-based approach cannot work efficiently. As clustering schemes add additional delays due to communication with cluster head only. In this paper, we propose a data dissemination technique using a time barrier mechanism to reduce the overhead of messages that can clutter the network. The proposed solution is based on the concept of a super-node to timely disseminate the messages. Moreover, to avoid unnecessary broadcast which can also cause the broadcast storm problem, the time barrier technique is adapted to handle this problem. Thus, only the farthest vehicle rebroadcasts the message which can cover more distance. Therefore, the message can reach the farthest node in less time and thus, improves the coverage and reduces the delay. The proposed scheme is compared with traditional probabilistic approaches. The evaluation section shows the reduction in message overhead, transmission delay, improved coverage, and packet delivery ratio. INDEX TERMS VANET, emergency messages, data dissemination, 802.11p WAVE, probabilistic clustering, time barrier.
With the advancement in communication technologies, Internet of vehicles presents a new set of opportunities to efficiently manage transportation problems using vehicle-to-vehicle communication. However, high mobility in vehicular networks causes frequent changes in network topology, which leads to network instability. This frequently results in emergency messages failing to reach the target vehicles. To overcome this problem, we propose a data dissemination scheme for such messages in vehicular networks, based on clustering and position-based broadcast techniques. The vehicles are dynamically clustered to handle the broadcast storm problem, and a position-based technique is proposed to reduce communication delays, resulting in timely dissemination of emergency messages. The simulation results show that the transmission delay, information coverage, and packet delivery ratios improved up to 14%, 9.7%, and 5.5%, respectively. These results indicate that the proposed scheme is promising as it outperforms existing techniques.
With the widespread adoption of the internet of things (IoT) technologies towards building a smart city, connected devices often offload computation tasks to nearby edge locations (base stations) to reduce overall computation and network delay. However, serving an ever-increasing number of end devices at these traditional edge locations is becoming impossible, subsequently making them fail to deliver the agreed quality of service to all requesting devices. However, the backend cloud data center is available to serve these requests but incurred additional communication delay, thus, unsuitable for delay-sensitive applications. Furthermore, the fact that the underlying network is inherently ad hoc which makes it prone to malicious nodes affecting its overall performance. In this work, we propose a secure fog computing paradigm where roadside units (RSUs) are used to offload tasks to nearby fog vehicles based on repute scores maintained at a distributed blockchain ledger. The experimental results demonstrate a significant performance gain in terms of queuing time, end-to-end delay, and task completion rate when compared to the baseline queuing-based task offloading scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.