Ankle and foot injuries are common among athletes and physically active individuals. The most common residual disability, ankle sprain, is characterized by instability along with postural sway. If the supporting structures around a joint become lax, posture stability and balance are also affected. Previous studies have examined muscle stiffness and elasticity and postural sway separately; however, the relationship between these factors is yet unknown. It is well known that the levels of sex hormones, especially estrogen, change in women over the phase of the menstrual cycle. Therefore, this study examined the relationship between the mechanical properties of tissue and balance activity using a non-invasive digital palpation device to determine if they undergo any changes over the menstrual cycle in young women. Sixteen young women with regular menstrual cycles completed the study. Tone, stiffness, and elasticity of the ankle muscles (lateral gastrocnemius, peroneus longus, and tibialis anterior) were measured using a non-invasive digital palpation device. Postural sway was recorded while the participants performed balance tasks during ovulation and menstruation. Significantly greater posture sway characteristics and ankle muscle elasticity were found during ovulation than during menstruation; lower tone and stiffness of the ankle muscles were observed at ovulation (p < 0.05). Additionally, weak-to-strong relationships between ankle muscle mechanical properties and postural sway characteristics were found (p < 0.05). These results suggest the effect of estrogen on human connective tissues. We therefore postulate that estrogen increases joint and muscle laxity and affects posture stability according to the phase of the menstrual cycle.