BackgroundThe purpose was to investigate the postural consequences of proprioceptive perturbation of the Triceps Surae and Peroneus Longus muscles. These muscles are known to control posture respectively in the sagittal and frontal planes during standing.MethodsStandard parameters and the time course of center of pressure (CoP) displacements were recorded in 21 young adults, instructed to maintain their balance during tendon vibration. Following 4 s of baseline recording, three types of vibration (80 Hz) were applied for 20 s each on the Peroneus or Achilles tendons, either unilaterally or bilaterally (with eyes shut). The recording continued for a further 24 s after the end of the vibration during the re-stabilization phase. To evaluate the time course of the CoP displacement, each phase of the trial was divided into periods of 4 seconds. Differences between the type of tendon vibration, phases and periods were analyzed using ANOVA.ResultsDuring all tendon vibrations, the speed of the CoP increased and a posterior displacement occurred. These changes were greater during Achilles than during Peroneus vibration for each type of vibration and also during bilateral compared with unilateral vibration. All maximal posterior positions occurred at a similar instant (between 12.7 and 14 s of vibration). Only unilateral Achilles vibration led to a significant medio-lateral displacement compared to the initial state.ConclusionsThe effect of the proprioceptive perturbation seems to be influenced by the position of the vibrated muscle according to the planes of the musculoskeletal postural organization. The amplitude of the destabilization may be related to the importance of the muscle for postural control. The medial CoP displacement which occurred during unilateral Achilles vibration is not a general reaction to a single-limb perturbation. Proprioceptive input from the non-perturbed leg was not sufficient for the antero-posterior displacement to be avoided; however, it helped to gain stability over time. The non-perturbed limb clearly plays an important role in the restoration of the postural referential, both during and immediately following the end of the vibration. The results demonstrated that at least 16 s of vibration are necessary to induce most postural effects in young adults.Electronic supplementary materialThe online version of this article (doi:10.1186/1743-0003-11-130) contains supplementary material, which is available to authorized users.
After limb amputation, patients often wake up with a vivid perception of the presence of the missing limb, called "phantom limb". Phantom limbs have mostly been studied with respect to pain sensation. But patients can experience many other phantom sensations, including voluntary movements. The goal of the present study was to quantify phantom movement kinematics and relate these to intact limb kinematics and to the time elapsed since amputation. Six upper arm and two forearm amputees with various delays since amputation (6months to 32years) performed phantom finger, hand and wrist movements at self-chosen comfortable velocities. The kinematics of the phantom movements was indirectly obtained via the intact limb that synchronously mimicked the phantom limb movements, using a Cyberglove® for measuring finger movements and an inertial measurement unit for wrist movements. Results show that the execution of phantom movements is perceived as "natural" but effortful. The types of phantom movements that can be performed are variable between the patients but they could all perform thumb flexion/extension and global hand opening/closure. Finger extension movements appeared to be 24% faster than finger flexion movements. Neither the number of types of phantom movements that can be executed nor the kinematic characteristics were related to the elapsed time since amputation, highlighting the persistence of post-amputation neural adaptation. We hypothesize that the perceived slowness of phantom movements is related to altered proprioceptive feedback that cannot be recalibrated by lack of visual feedback during phantom movement execution.
BACKGROUND: In hemiparetic patients, the skeletal muscle is mainly affected with a combination of abnormalities (denervation, remodeling, spasticity, and eventually muscular atrophy). OBJECTIVE: This study examined the role of eccentric exercise in strengthening muscles of the lower extremity and ultimately improving autonomy in patients with post-stroke hemiparesis during gait. METHODS: Thirty-seven patients hemiparetic adults were recruited, randomized into a control group (n = 19) and an intervention group receiving eccentric muscle strengthening (n = 18). The protocol consisted of three sets of five repetitions of eccentric contraction of the paretic limb after determining the maximum repetition (1 MRI). Evaluation of the 1RM, 10 meters and 6WMT was performed before and after the exercise for each group. Manova test was used to compare the differences between the control and intervention groups. RESULTS: The paretic limb showed significant increase in one-repetition maximum (1RM) between before and after rehabilitation (p≤0.00003). The two groups of Patients increased their walking speed (p≤0.0005), but we observed a significant difference between groups only for the 6MWT and not on the 10 meters Test. CONCLUSIONS: Eccentric training can be useful in strengthening the muscles of the lower limbs, and promoting gait performance. Eccentric training could complement other methods of managing patients with post-stroke hemiparesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.