Vestibular inputs tonically activate the anti-gravitative leg muscles during normal standing in humans, and visual information and proprioceptive inputs from the legs are very sensitive sensory loops for body sway control. This study investigated the postural control in a homogeneous population of 50 unilateral vestibular-deficient patients (Ménière's disease patients). It analyzed the postural deficits of the patients before and after surgical treatment (unilateral vestibular neurotomy) of their diseases and it focused on the visual contribution to the fine regulation of body sway. Static posturographic recordings on a stable force-plate were done with patients with eyes open (EO) and eyes closed (EC). Body sway and visual stabilization of posture were evaluated by computing sway area with and without vision and by calculating the percentage difference of sway between EC and EO conditions. Ménière's patients were examined when asymptomatic, 1 day before unilateral vestibular neurotomy, and during the time-course of recovery (1 week, 2 weeks, 1 month, 3 months, and 1 year). Data from the patients were compared with those recorded in 26 healthy, age- and sex-matched participants. Patients before neurotomy exhibited significantly greater sway area than controls with both EO (+52%) and EC (+93%). Healthy participants and Ménière's patients, however, displayed two different behaviors with EC. In both populations, 54% of the subjects significantly increased their body sway upon eye closure, whereas 46% exhibited no change or significantly swayed less without vision. This was statistically confirmed by the cluster analysis, which clearly split the controls and the patients into two well-identified subgroups, relying heavily on vision (visual strategy, V) or not (non-visual strategy, NV). The percentage difference of sway averaged +36.7%+/-10.9% and -6.2%+/-16.5% for the V and NV controls, respectively; +45.9%+/-16.8% and -4.2%+/-14.9% for the V and NV patients, respectively. These two distinct V and NV strategies seemed consistent over time in individual subjects. Body sway area was strongly increased in all patients with EO early after neurotomy (1 and 2 weeks) and regained preoperative values later on. In contrast, sway area as well as the percentage difference of sway were differently modified in the two subgroups of patients with EC during the early stage of recovery. The NV patients swayed more, whereas the V patients swayed less without vision. This surprising finding, indicating that patients switched strategies with respect to their preoperative behavior, was consistently observed in 45 out of the 50 Ménière's patients during the whole postoperative period, up to 1 year. We concluded that there is a differential weighting of visual inputs for the fine regulation of posture in both healthy participants and Ménière's patients before surgical treatment. This differential weighting was correlated neither with age or sex factors, nor with the clinical variables at our disposal in the patients. It can be accounted fo...
Stretch-shortening cycle (SSC)-type fatigue is associated with acute and delayed functional defects, and appears to be a useful model to reveal the flexibility of both central and reflex adjustments to the contractile failure. SSC fatigue was induced in an experimental (EXP) group (n=6) on a sledge ergometer with an exhaustive rebound exercise with submaximal effort. The acute (POST) and 2-day delayed (2D) neuromuscular changes with fatigue were examined in a short submaximal rebound task (REBOUND) and in a maximal isometric plantarflexion test (ISOM). The EXP group results were compared to those of a control group (n=6) who did not perform the exhaustive SSC exercise and did not present any change in the tests. In the EXP group, the ISOM test revealed mostly a large decrease in maximal plantarflexion force at 2D that was correlated with the reduced mean soleus muscle (SOL) activation. Indicating "task-dependent" fatigue effects on the neural changes, the REBOUND test revealed both acute and delayed increases in SOL activation. Supporting central neural changes, SOL preactivation increased in POST and 2D. The neural flexibility along time and across muscles was demonstrated by the shifted increase in SOL activation from the braking phase in POST to the push-off phase in 2D, and associated increased gastrocnemius medialis preactivation in 2D. In contrast, activation during the stretch-reflex period was constant in POST, and decreased in 2D. These results would support the influence of musculotendinous afferents on the flexible neural adjustments to the SSC-induced contractile failure.
Minor cross-over effects of unilateral muscle fatigue have been reported after isometric exercises. The present study re-examined this possibility after an exhaustive stretch-shortening cycle (SSC)-type exercise. Twenty-five subjects performed on a sledge apparatus a unilateral exhaustive rebound exercise involving mostly the triceps surae muscle group. Ipsilateral vs contralateral fatigue effects were compared in uni- and bilateral tests that included a maximal isometric voluntary contraction (MVC) and a series of 10 maximal drop jumps (DJ). These tests were carried out just before and after (POST) the exhaustive SSC exercise, and were repeated 2 days later (D2), at the expected time of major inflammation and pain. The exercised (fatigued) leg analysis revealed significant declines in MVC and DJ performances at POST and D2, the latter ones being associated with significant decreases in voluntary muscle activity. In contrast, no significant change was found for the non-fatigued leg. These results do not support the existence of cross-over effects after exhaustive SSC exercise, at least when tested in maximal static and dynamic unilateral motor tasks.
BackgroundThe purpose was to investigate the postural consequences of proprioceptive perturbation of the Triceps Surae and Peroneus Longus muscles. These muscles are known to control posture respectively in the sagittal and frontal planes during standing.MethodsStandard parameters and the time course of center of pressure (CoP) displacements were recorded in 21 young adults, instructed to maintain their balance during tendon vibration. Following 4 s of baseline recording, three types of vibration (80 Hz) were applied for 20 s each on the Peroneus or Achilles tendons, either unilaterally or bilaterally (with eyes shut). The recording continued for a further 24 s after the end of the vibration during the re-stabilization phase. To evaluate the time course of the CoP displacement, each phase of the trial was divided into periods of 4 seconds. Differences between the type of tendon vibration, phases and periods were analyzed using ANOVA.ResultsDuring all tendon vibrations, the speed of the CoP increased and a posterior displacement occurred. These changes were greater during Achilles than during Peroneus vibration for each type of vibration and also during bilateral compared with unilateral vibration. All maximal posterior positions occurred at a similar instant (between 12.7 and 14 s of vibration). Only unilateral Achilles vibration led to a significant medio-lateral displacement compared to the initial state.ConclusionsThe effect of the proprioceptive perturbation seems to be influenced by the position of the vibrated muscle according to the planes of the musculoskeletal postural organization. The amplitude of the destabilization may be related to the importance of the muscle for postural control. The medial CoP displacement which occurred during unilateral Achilles vibration is not a general reaction to a single-limb perturbation. Proprioceptive input from the non-perturbed leg was not sufficient for the antero-posterior displacement to be avoided; however, it helped to gain stability over time. The non-perturbed limb clearly plays an important role in the restoration of the postural referential, both during and immediately following the end of the vibration. The results demonstrated that at least 16 s of vibration are necessary to induce most postural effects in young adults.Electronic supplementary materialThe online version of this article (doi:10.1186/1743-0003-11-130) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.