Understanding the link between the protective role of potassium silicate (K2SiO3) against water shortage and the eventual grain yield of maize plants is still limited under semiarid conditions. Therefore, in this study, we provide insights into the underlying metabolic responses, mineral nutrients uptake and some nonenzymatic and enzymatic antioxidants that may differ in maize plants as influenced by the foliar application of K2SiO3 (0, 1 and 2 mM) under three drip irrigation regimes (100, 75 and 50% of water requirements). Our results indicated that, generally, plants were affected by both moderate and severe deficit irrigation levels. Deficit irrigation decreased shoot dry weight, root dry weight, leaf area index (LAI), relative water content (RWC), N, P, K, Ca, Fe, Zn, carotenoids, grain yield and its parameters, while root/shoot ratio, malondialdehyde (MDA), proline, soluble sugars, ascorbic acid, soluble phenols, peroxidase (POD), catalase (CAT), polyphenol oxidase (PPO), and ascorbate peroxidase (APX) were improved. The foliar applications of K2SiO3 relatively alleviated water stress-induced damage. In this respect, the treatment of 2 mM K2SiO3 was more effective than others and could be recommended to mitigate the effect of deficit irrigation on maize plants. Moreover, correlation analysis revealed a close link between yield and the most studied traits.