2001
DOI: 10.1006/jnth.2000.2621
|View full text |Cite
|
Sign up to set email alerts
|

Power Bases for 2-Power Cyclotomic Fields

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
6
0
2

Year Published

2002
2002
2019
2019

Publication Types

Select...
3
3

Relationship

1
5

Authors

Journals

citations
Cited by 11 publications
(8 citation statements)
references
References 18 publications
0
6
0
2
Order By: Relevance
“…The proof follows the proof in the 2-power case given in Robertson [10]. Let σ g repeatedly act on the equation σ g (μ) = μλ.…”
Section: Lemma 21 Let λ and μ Be Units Inmentioning
confidence: 94%
See 3 more Smart Citations
“…The proof follows the proof in the 2-power case given in Robertson [10]. Let σ g repeatedly act on the equation σ g (μ) = μλ.…”
Section: Lemma 21 Let λ and μ Be Units Inmentioning
confidence: 94%
“…In Robertson [10] we considered the case where ζ is a primitive 2 m th root of unity and showed that if λ is a cyclotomic unit then μ is a cyclotomic unit as well. In the current case ζ is a primitive p m th root of unity and we require the additional condition that gcd(h + q , p(p − 1)/2) = 1.…”
Section: Cyclotomic Unitsmentioning
confidence: 99%
See 2 more Smart Citations
“…Alors soit α est équivalent à ζ q , soit α est équivalent à 1/(ζ q + 1). Robertson [8] démontre le théorème suivant qui preuve une telle conjecture dans le cas où q est une puissance de 2 : Ensuite, Robertson et Gaál [3] obtiennent un résultat similaire au théorème 1 pour les classes des générateurs de Z[ζ q ], où q est la puissance d'un nombre premier p, plus précisément :…”
Section: Introductionunclassified