2014
DOI: 10.1016/j.tcs.2014.04.022
|View full text |Cite
|
Sign up to set email alerts
|

Precise quantitative information flow analysis— a symbolic approach

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
29
0

Year Published

2014
2014
2022
2022

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 31 publications
(29 citation statements)
references
References 10 publications
0
29
0
Order By: Relevance
“…Of course, QIF is a hard problem, so computational constraints may force the user to settle for merely deriving (more or less tight) leak bounds as program complexity increases. (5) The analysis outpferforms comparable previous approaches both for theoretical reasons (e.g., it avoids computationally expensive program self-composition used in [11,12,2,13]) and practically due to the use of a number of well-connected novel and existing state-of-the-art techniques and tools for propositional reasoning. Programs, states, and transition relation.…”
Section: Introductionmentioning
confidence: 94%
See 2 more Smart Citations
“…Of course, QIF is a hard problem, so computational constraints may force the user to settle for merely deriving (more or less tight) leak bounds as program complexity increases. (5) The analysis outpferforms comparable previous approaches both for theoretical reasons (e.g., it avoids computationally expensive program self-composition used in [11,12,2,13]) and practically due to the use of a number of well-connected novel and existing state-of-the-art techniques and tools for propositional reasoning. Programs, states, and transition relation.…”
Section: Introductionmentioning
confidence: 94%
“…In order to maintain automation, the latter approach gives up precise computation of the leak and opts for an approximative characterization, deriving lower and upper bounds on residual min-entropy, as well as probabilistic bounds on residual Shannon entropy. A different extension based on symbolic Barvinok counting was proposed by Klebanov in [13].…”
Section: Related Workmentioning
confidence: 99%
See 1 more Smart Citation
“…Klebanov [13,14] has proposed efficient algorithms for exactly computing standard quantitative information flow measures of programs such as conditional (minimal) guessing entropy. The algorithms are either based on SATsolving techniques [14] or on extended Barvinok counting [22].…”
Section: Related Workmentioning
confidence: 99%
“…This problem arises in many fields of computer science including artificial intelligence, program optimizations and information flow analysis [30,39]. For example, probabilistic inference problems in Bayesian networks can be solved by first representing the network as a set of propositional clauses, and then model counting the clause set to compute all the marginal probabilities [14,17,39].…”
Section: Introductionmentioning
confidence: 99%