2017 5th International Workshop on Biometrics and Forensics (IWBF) 2017
DOI: 10.1109/iwbf.2017.7935106
|View full text |Cite
|
Sign up to set email alerts
|

Predicting political mood tendencies based on Twitter data

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0
1

Year Published

2017
2017
2021
2021

Publication Types

Select...
5
3
1

Relationship

0
9

Authors

Journals

citations
Cited by 13 publications
(5 citation statements)
references
References 16 publications
0
4
0
1
Order By: Relevance
“…The evaluation results in a Mean Absolute Error (MAE) of 0.63%. Suarez et al [151] show the co-relation between Twitter sentiments and political preferences in a certain period. The findings however are not generalizable for overall prediction.…”
Section: ) Political Campaignsmentioning
confidence: 99%
“…The evaluation results in a Mean Absolute Error (MAE) of 0.63%. Suarez et al [151] show the co-relation between Twitter sentiments and political preferences in a certain period. The findings however are not generalizable for overall prediction.…”
Section: ) Political Campaignsmentioning
confidence: 99%
“…Nofer, et al [36] predicted stock returns by extracting user sentiment levels from Twitter. Tumasjan, et al [37] predicted sentiment trends in political events (government, elections, security and defense, and health insurance) by processing and classifying the data in Twitter. Zhao, et al [38] proposed a deep event-emotion analysis system on Microblogs, explored the causes of different emotions in heated events.…”
Section: Emotional Analysismentioning
confidence: 99%
“…Tomando como estudio de caso las elecciones presidenciales de Estados Unidos en 2016, tres estudios independientes [19]- [21] muestran una caracterización completa de los usuarios de redes sociales como Twitter y sus preferencias políticas.…”
Section: Análisis De Sentimientos Y Otras Técnicas De Predicciónunclassified