Intelligent question-answering (QA) systems have witnessed increased interest in recent years, particularly in their ability to facilitate information access, data interpretation or decision support. The wind energy sector is one of the most promising sources of renewable energy, yet turbines regularly suffer from failures and operational inconsistencies, leading to downtimes and significant maintenance costs. Addressing these issues requires rapid interpretation of complex and dynamic data patterns under time-critical conditions. In this article, we present a novel approach that leverages interactive, natural language-based decision support for operations & maintenance (O&M) of wind turbines. The proposed interactive QA system allows engineers to pose domain-specific questions in natural language, and provides answers (in natural language) based on the automated retrieval of information on turbine subcomponents, their properties and interactions, from a bespoke domain-specific knowledge graph. As data for specific faults is often sparse, we propose the use of paraphrase generation as a way to augment the existing dataset. Our QA system leverages encoder-decoder models to generate Cypher queries to obtain domain-specific facts from the KG database in response to user-posed natural language questions. Experiments with an attention-based sequence-to-sequence (Seq2Seq) model and a transformer show that the transformer accurately predicts up to 89.75% of responses to input questions, outperforming the Seq2Seq model marginally by 0.76%, though being 9.46 times more computationally efficient. The proposed QA system can help support engineers and technicians during O&M to reduce turbine downtime and operational costs, thus improving the reliability of wind energy as a source of renewable energy.