Polymeric insulators, in particular silicone rubber (SIR) are lightweight, have good hydrophobicity characteristics, and are easy to carry and install. They are commonly used for outdoor insulation in power lines. However, pollution, UV radiation, temperature, discharge, wetness, and stress can cause them to degrade over time, losing their electrical properties. Therefore, evaluating the ageing and degradation of polymeric insulators under different conditions becomes crucial. This paper investigates the ageing effects of the polymeric insulators with differences in pollution, applied voltage, hydrophobicity class, and geometrical structures of insulators. The investigation includes the experimental tests of the insulators' electrical properties such as leakage current and flashover voltage, after assessing the initial characteristics of insulators based on their age and supply voltage. In addition, the aged polymeric insulator model based on an equivalent circuit model was developed to determine the leakage current and breakdown voltage of aged insulators. Moreover, an artificial neural network model is carried out to predict the critical leakage current and flashover voltage of the insulator under the ageing effect. The experiment results were used to validate the accuracy of the proposed models; with an aggregate error of less than 10%, the proposed models appeared to be satisfactory. These models can serve as a scholarly resource for designing, operating, and maintaining insulators, especially in polluted environments.