Intelligent vehicle plans motion and navigate itself based on the surrounding environment perception. Hence, the precise environment recognition is an essential part of self-driving vehicle. There exist many vulnerable road users (e.g. vehicle, pedestrians) on vehicular driving environment, the vehicle must percept all the dynamic obstacles accurately for safety. In this paper, we propose an multiple vehicle tracking algorithm using microwave radar. Our proposed system includes various special features. First, exceptional radar measurement model for vehicle, concentrated on the corner, is described by mixture density network (MDN), and applied to particle filter weighting. Also, to conquer the curse of dimensionality of particle filter and estimate the time-varying number of multi-target states, reversible jump markov chain monte carlo (RJMCMC) is used to sampling step of the proposed algorithm. The robustness of the proposed algorithm is demonstrated through several computer simulations.