2021
DOI: 10.31326/jisa.v4i1.904
|View full text |Cite
|
Sign up to set email alerts
|

Prediction of Electrical Energy Consumption Using LSTM Algorithm with Teacher Forcing Technique

Abstract: Electrical energy is an important foundation in world economic growth, therefore it requires an accurate prediction in predicting energy consumption in the future. The methods that are often used in previous research are the Time Series and Machine Learning methods, but recently there has been a new method that can predict energy consumption using the Deep Learning Method which can process data quickly for training and testing. In this research, the researcher proposes a model and algorithm which contained in … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0
1

Year Published

2022
2022
2023
2023

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 23 publications
0
0
0
1
Order By: Relevance
“…Dalam hal ini penulis ingin menunjukkan model Prediksi dengan pendekatan LSTM. Prediksi dengan metode LSTM ini akan menggunakan fungsi activation relu lalu akan dilakukan juga evaluasi dengan menggunakan mean absolute percentage error(MAPE) dan root mean square error(RMSE) [10].…”
Section: Pendahuluanunclassified
“…Dalam hal ini penulis ingin menunjukkan model Prediksi dengan pendekatan LSTM. Prediksi dengan metode LSTM ini akan menggunakan fungsi activation relu lalu akan dilakukan juga evaluasi dengan menggunakan mean absolute percentage error(MAPE) dan root mean square error(RMSE) [10].…”
Section: Pendahuluanunclassified