Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Ultra-endurance has been defined as any exercise bout that exceeds 6 h. A number of exceptional, record-breaking performances by female athletes in ultra-endurance sport has roused speculation that they might be predisposed to success in such events. Indeed, while the male-to-female performance gap in traditional endurance sport (e.g., marathon) remains at ~10%, the disparity in ultra-endurance competition has been reported as low as 4% despite the markedly lower number of female participants. Moreover, females generally outperform males in extreme-endurance swimming. The issue is complex, however, with many sportsspecific considerations and caveats. This review summarizes the sex-based differences in physiological functions and draws attention to those which likely determine success in extreme exercise endeavors. The aim is to provide a balanced discussion of the female versus male predisposition to ultra-endurance sport. Herein, we discuss sex-based differences in muscle morphology and fatigability, respiratory-neuromechanical function, substrate utilization, oxygen utilization, gastrointestinal structure and function, and hormonal control. The literature indicates that while females exhibit numerous phenotypes that would be expected to confer an advantage in ultra-endurance competition (e.g., greater fatigue-resistance, greater substrate efficiency, and lower energetic requirements), they also exhibit several characteristics that unequivocally impinge on performance (e.g., lower O2-carrying capacity, increased prevalence of GI distress, and sex-hormone effects on cellular function/ injury risk).Crucially, the advantageous traits may only manifest as ergogenic in the extreme endurance events which, paradoxically, are the races that females less often contest. The title question should be revisited in the coming years when/if the number of female participants increases. KEY POINTS• Females exhibit numerous physiological characteristics that would be expected to confer an advantage in ultra-endurance competition. However, these traits may only manifest in the extreme distance events that females less often contest• Several aspects of female physiology unequivocally inhibit performance making it unlikely that the fastest females will surpass the fastest males in this sport• More direct physiological comparisons between male and female ultra-endurance athletes are needed, particularly when/if female participation numbers increase
Ultra-endurance has been defined as any exercise bout that exceeds 6 h. A number of exceptional, record-breaking performances by female athletes in ultra-endurance sport has roused speculation that they might be predisposed to success in such events. Indeed, while the male-to-female performance gap in traditional endurance sport (e.g., marathon) remains at ~10%, the disparity in ultra-endurance competition has been reported as low as 4% despite the markedly lower number of female participants. Moreover, females generally outperform males in extreme-endurance swimming. The issue is complex, however, with many sportsspecific considerations and caveats. This review summarizes the sex-based differences in physiological functions and draws attention to those which likely determine success in extreme exercise endeavors. The aim is to provide a balanced discussion of the female versus male predisposition to ultra-endurance sport. Herein, we discuss sex-based differences in muscle morphology and fatigability, respiratory-neuromechanical function, substrate utilization, oxygen utilization, gastrointestinal structure and function, and hormonal control. The literature indicates that while females exhibit numerous phenotypes that would be expected to confer an advantage in ultra-endurance competition (e.g., greater fatigue-resistance, greater substrate efficiency, and lower energetic requirements), they also exhibit several characteristics that unequivocally impinge on performance (e.g., lower O2-carrying capacity, increased prevalence of GI distress, and sex-hormone effects on cellular function/ injury risk).Crucially, the advantageous traits may only manifest as ergogenic in the extreme endurance events which, paradoxically, are the races that females less often contest. The title question should be revisited in the coming years when/if the number of female participants increases. KEY POINTS• Females exhibit numerous physiological characteristics that would be expected to confer an advantage in ultra-endurance competition. However, these traits may only manifest in the extreme distance events that females less often contest• Several aspects of female physiology unequivocally inhibit performance making it unlikely that the fastest females will surpass the fastest males in this sport• More direct physiological comparisons between male and female ultra-endurance athletes are needed, particularly when/if female participation numbers increase
Purpose: Despite the volume of available literature focusing on marathon running and the prediction of performance, no single prediction equations exists that is accurate for all runners of varying experiences and abilities. Indeed the relative merits and utility of the existing equations remain unclear. Thus, the aim of this study was to collate, characterize, compare, and contrast all available marathon prediction equations. Methods: A systematic review was conducted to identify observational research studies outlining any kind of prediction algorithm for marathon performance. Results: Thirty-six studies with 114 equations were identified. Sixty-one equations were based on training and anthropometric variables, whereas 53 equations included variables that required laboratory tests and equipment. The accuracy of these equations was denoted via a variety of metrics; r2 values were provided for 68 equations (r2 = .10–.99), and an SEE was provided for 19 equations (SEE 0.27–27.4 min). Conclusion: Heterogeneity of the data precludes the identification of a single “best” equation. Important variables such as course gradient, sex, and expected weather conditions were often not included, and some widely used equations did not report the r2 value. Runners should therefore be wary of relying on a single equation to predict their performance.
This study examined energy expenditure and physiologic determinants for marathon performance in recreational runners. Twenty recreational marathon runners participated (10 males aged 41 +/- 11.3 years, 10 females aged 42.7 +/- 11.7 years). Each subject completed a V(.-)O2max and a 1-hour treadmill run at recent marathon pace, and body composition was indirectly determined via dual energy X-ray absorptiometry. The male runners exhibited higher V(.-)O2max (ml x kg(-1) x min(-1)) values (52.6 +/- 5.5) than their female counterparts (41.9 +/- 6.6), although ventilatory threshold (T-vent) values were similar between groups (males: 76.2 +/- 6.1 % of V(.-)O2max, females: 75.1 +/- 5.1%). The male runners expended more energy (2,792 +/- 235 kcal) for their most recent marathon as calculated from the 1-hour treadmill run at marathon pace than the female runners (2,436 +/- 297 kcal). Body composition parameters correlated moderately to highly (r ranging from 0.50 to 0.87) with marathon run time. Also, V(.-)O2max (r = -0.73) and ventilatory threshold (r = -0.73) moderately correlated with marathon run time. As a group, the participants ran near their ventilatory threshold for their most recent marathon (r = 0.74). These results indicate the influence of body size on marathon run performance. In general, the larger male and female runners ran slower and expended more kilocalories than smaller runners. Regardless of marathon finishing time, the runners maintained a pace near their T-vent, and as T-vent or V(.-)O2max increased, marathon performance time decreased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.