The idea of creating replacement for damaged or diseased tissue, which will mimic the physiological conditions and simultaneously promote regeneration by patients’ own cells, has been a major challenge in the biomedicine for more than a decade. Therefore, nanofibers are a promising solution to address these challenges. Nanofiber technology is an exciting area attracting the attention of many researchers as a potential solution to these current challenges in the biomedical field such as burn and wound care, organ repair, and treatment for osteoporosis and various diseases. Nanofibers mimic the porous topography of natural extracellular matrix (ECM), hence they are advantageous for tissue regeneration . In biomedical engineering, electrospinning exhibits advantages as a tissue engineering scaffolds producer, which can make appropriate resemblance in physical structure with ECM. This is because of the nanometer scale of ECM fibrils in diameter, which can be mimicked by electrospinning procedure as well as its porous structure. In this review, the applications of nanofibers in various biomedical areas such as tissue engineering, wound dressing and facemask, are summarized. It provides opportunities to develop new materials and techniques that improve the ability for developing quick, sensitive and reliable analytical techniques.