Background: Protein-polysaccharide complexes have been widely used to stabilize high-internal-phase emulsion (HIPEs). However, it is still unknown whether soy protein isolate-dextran (SPI-Dex) complexes can stabilize HIPEs or what is the effect of Dex concentration on the HIPEs. Furthermore, the non-covalent interaction mechanism between SPI and Dex is also unclear. Therefore, we fabricated SPI-Dex complexes and used them to stabilize HIPEs-loaded quercetin and explore the interaction mechanism between SPI and Dex, as well as the effect of Dex concentration on the particle size, ζ-potential, microstructure, rheology, quercetin encapsulation efficiency, and gastrointestinal fate of the HIPEs.Results: Spectral analysis (fourier transform infrared spectroscopy, ultraviolet spectroscopy, and fluorescence spectroscopy) results identified the formation of SPI-Dex complexes, and indicated that the addition of Dex changed the spatial structure of SPI, whereas thermodynamic analysis (ΔH > 0, ΔS > 0) showed that hydrophobic interactions were the main driving forces in the formation of SPI-Dex complexes. Compared with HIPEs stabilized by SPI, the SPI-Dex complex-stabilized HIPEs had smaller particles (3000.33 ± 201.22 nm), as well as higher ζ-potential (−21.73 ± 1.10 mV), apparent viscosities, modulus, and quercetin encapsulation efficiency (98.19 ± 0.14%). In addition, in vitro digestion revealed that SPI-Dex complex-stabilized HIPEs significantly reduced the release of free fatty acid and improved quercetin bioaccessibility. Conclusion: HIPEs stabilized by SPI-Dex complexes delayed the release of free fat acid and improved the bioaccessibility of quercetin, and may be help in designing delivery systems for bioactive substances with specific properties.