We address the consequences of back-action in the unidirectional coupling of two cascaded open quantum subsystems connected to the same reservoir at different spatial locations. In the spirit of [H. J. Carmichael, Phys. Rev. Lett. 70, 2273], the second subsystem is a two-level atom, while the first transforms from a driven empty cavity to a perturbative QED configuration and ultimately to a driven Jaynes-Cummings (JC) oscillator through a varying light-matter coupling strength. For our purpose, we appeal at first to the properties of resonance fluorescence in the statistical description of radiation emitted along two channels -those of forwards and sideways scattering -comprising the monitored output. In the simplest case of an empty cavity coupled to an external atom, we derive analytical results for the nonclassical fluctuations in the fields occupying the two channels, pursuing a mapping to the bad-cavity limit of the JC model to serve as a guide for the description of the more involved dynamics. Finally, we exemplify a conditional evolution for the composite system of a critical JC oscillator on resonance coupled to an external monitored two-level target, showing that coherent atomic oscillations of the target probe the onset of a second-order dissipative quantum phase transition in the source.