Antibiotic-resistant Campylobacter could adversely affect treatment outcomes, especially in children. We investigated the antibiotic susceptibility profiles, virulence potentials and genetic relatedness of Campylobacter spp. from paediatric and water samples in the North West Province, South Africa. Overall, 237 human and 20 water isolates were identified using culture and real-time polymerase chain reaction (PCR). The antibiotic susceptibility profiles were determined using the disk diffusion method. Gradient strips were used to determine the minimum inhibitory concentration of each antibiotic. Antibiotic resistance (gryA, tetO and 23S rRNA 2075G and 2074C) and virulence (cadF and ciaB) genes were also investigated using PCR. A phylogenetic tree to ascertain the clonality between water and clinical isolates was constructed using MEGA 7. Overall, 95% (water) and 64.7% (human) of the isolates were resistant to at least one antibiotic tested. The highest resistance was against clarithromycin (95%) for water and ampicillin (60.7%) for human isolates. The 23S rRNA 2075G/2074C mutation was the most expressed resistance gene. Phylogenetic reconstruction revealed eight intermixed clades within water and human Campylobacter isolates. This study suggests the possible circulation of potentially pathogenic antibiotic-resistant Campylobacter in the Northwest Province, South Africa with drinking water being a possible vector for disease transmission in this area.