Today LED technology is being imposed, day by day, in our cities and homes as an efficient way of lighting. The performance of its lighting, durability, energy efficiency, and light, coupled with the economy of its use, is shifting to other classic forms of lighting. However, some problems associated with the durability of equipment associated with thermal dissipation and high-temperature problems, which end up affecting the light intensity and service life, are beginning to be detected. The objective of this paper is to compare the results obtained previously, at different contour temperatures, with the current practical results obtained with a FLUKETI25 thermal imaging camera. The theoretical results will be compared with the current results applied to the different luminaires. Where real thermal dissipation is studied, it is obtained for each of them in the laboratory of illumination with the thermographic camera FLUKE TI. The theoretical and experimental results are evaluated, and the results are discussed. This study shows that instead of LED technology, it is less risky for quality depreciation and durability of lighting if a project has already been achieved that favors optimal thermal dissipation, supported by the importance of choosing an appropriate design and appropriate materials.