Mesenchymal stem cells (MSC) are multipotent progenitor cells defined by their ability to self-renew and give rise to differentiated progeny. Previous studies have reported that MSC may be induced in vitro to develop into different types of specialized cells including male gametes. In vitro gamete derivation technology has potential applications as an alternative method for dissemination of elite animal genetics, production of transgenic animals and conservation of endangered species. This study aimed at investigating the in vitro effect of BMP4, TGFβ1 and RA on the potential for germ cell (GC) differentiation of bovine foetal MSC (bfMSC) derived from bone marrow (BM). The effect of BMP4, TGFβ1 and RA was analysed on the expression of pluripotent, GC and male GC markers on bfMSC during a 21-day culture period. bfMSC cultured under in vitro conditions expressed OCT4, NANOG and DAZL, but lacked expression of mRNA of VASA, STELLA, FRAGILIS, STRA8 and PIWIL2. Treatment with exogenous BMP4 and TGFβ1 induced a transient increase (p < .05) in DAZL and NANOG mRNA levels, respectively. However, exposure to RA was more effective in increasing (p < .05) expression of DAZL and regulating expression of OCT4 and mRNA levels of NANOG. These data suggest that bfMSC may possess potential for early GC differentiation, where OCT4, NANOG and specially DAZL may play significant roles in controlling progression along the GC lineage.