Mesenchymal stem cells (MSC) are multipotent progenitor cells defined by their ability to self-renew and give rise to differentiated progeny. Previous studies have reported that MSC may be induced in vitro to develop into different types of specialized cells including male gametes. In vitro gamete derivation technology has potential applications as an alternative method for dissemination of elite animal genetics, production of transgenic animals and conservation of endangered species. This study aimed at investigating the in vitro effect of BMP4, TGFβ1 and RA on the potential for germ cell (GC) differentiation of bovine foetal MSC (bfMSC) derived from bone marrow (BM). The effect of BMP4, TGFβ1 and RA was analysed on the expression of pluripotent, GC and male GC markers on bfMSC during a 21-day culture period. bfMSC cultured under in vitro conditions expressed OCT4, NANOG and DAZL, but lacked expression of mRNA of VASA, STELLA, FRAGILIS, STRA8 and PIWIL2. Treatment with exogenous BMP4 and TGFβ1 induced a transient increase (p < .05) in DAZL and NANOG mRNA levels, respectively. However, exposure to RA was more effective in increasing (p < .05) expression of DAZL and regulating expression of OCT4 and mRNA levels of NANOG. These data suggest that bfMSC may possess potential for early GC differentiation, where OCT4, NANOG and specially DAZL may play significant roles in controlling progression along the GC lineage.
Staphylococcus aureus
is the most commonly isolated pathogen from clinical bovine mastitis samples and a difficult pathogen to combat. Mesenchymal stem cells (MSC) are multipotent progenitor cells equipped with a variety of factors that inhibit bacterial growth. The aim of the present study was to evaluate the in vitro antibacterial potential against
S. aureus
of conditioned medium (CM) from MSC derived from fetal bovine bone marrow (BM-MSC) and adipose tissue (AT-MSC). BM-MSC, AT-MSC and fetal fibroblasts (FB) cultures were activated by infection with
S. aureus
. Bacterial growth was evaluated in presence of CM, concentrated CM (CCM), activated CM (ACM) and concentrated ACM (CACM) from BM-MSC, AT-MSC and FB. Gene expression of β-defensin 4A (bBD-4A), NK-lysine 1 (NK1), cathelicidin 2 (CATHL2), hepcidin (HEP) and indoleamine 2,3 dioxygenase (IDO) and protein expression of bBD-4A were determined in activated and non-activated cells. The majority of BM-MSC and AT-MSC expressed CD73, Oct4 and Nanog, and were negative for CD34. Growth of
S. aureus
decreased when it was exposed to CM from BM-MSC, AT-MSC and FB. Moreover, growth of
S. aureus
in CCM, ACM and CACM was lower compared to controls of CM from BM-MSC and AT-MSC. Activated AT-MSC increased mRNA levels of bBD4A and NK1, and protein levels of bBD4A in CM. Thus, CM from fetal bovine BM-MSC and AT-MSC has the capacity to reduce in average ~30% of
S. aureus
relative growth under in vitro conditions. The in vitro antibacterial effect of fetal bovine MSC may be mediated by bBD4A and NK1 activity.
In vitro gamete derivation from stem cells has potential applications in animal reproduction as an alternative method for the dissemination of elite animal genetics, production of transgenic animals, and conservation of endangered species. Mesenchymal stem cells (MSCs) may be suitable candidates for in vitro gamete derivation considering their differentiative capacity and their potential for cell therapy. Due to its relevance in gametogenesis, it has been reported that retinoic acid (RA) and bone morphogenetic protein (BMP) 4 are able to upregulate the expression of specific markers associated to the early stages of germ cell (GCs) differentiation in bovine fetal MSCs (bfMSCs). In the present study, we used polycistronic vectors containing combinations of GC genes DAZL, STRA8, and BOULE followed by exposure to BMP4 or RA to induce GC differentiation of bovine fetal adipose tissue-derived MSC (AT-MSCs). Cells samples at Day 14 were analyzed according to the expression of pluripotent genes NANOG and OCT4 and GC genes DAZL, STRA8, BOULE, PIWI, c-KIT, and FRAGILIS using Q-PCR. Fetal and adult testis and AT-MSCs samples were also analyzed for the expression of DAZL, STRA8, and NANOG using immunofluorescence. Increased gene expression levels in the adult testis and cell-specific distribution of DAZL, STRA8, and NANOG in the fetal testis suggest that these markers are important components of the regulatory network that control the in vivo differentiation of bovine GCs. Overexpression of DAZL and STRA8 in bi-cistronic and DAZL, STRA8, and BOULE in tri-cistronic vectors resulted in the upregulation of OCT4, NANOG, and PIWIL2 in bovine fetal AT-MSCs. While BMP4 repressed NANOG expression, this treatment increased DAZL and c-KIT and activated FRAGILIS expression in bovine fetal AT-MSCs. Treatment with RA for 14 days increased the expression of DAZL and FRAGILIS and maintained the mRNA levels of STRA8 in bovine fetal AT-MSCs transfected with bi-cistronic and tri-cistronic vectors. Moreover, RA treatment repressed the expression of OCT4 and NANOG in these cells. Thus, overexpression of DAZL, STRA8, and BOULE induced the upregulation of the pluripotent markers and PIWIL2 in transfected bovine fetal AT-MSCs. The partial activation of GC gene expression by BMP4 and RA suggests that both factors possess common targets but induce different gene expression effects during GC differentiation in overexpressing bovine fetal AT-MSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.