This work examines future flood risk within the context of integrated climate and hydrologic modelling uncertainty. The research questions investigated are (1) whether hydrologic uncertainties are a significant source of uncertainty relative to other sources such as climate variability and change and (2) whether a statistical characterization of uncertainty from a lumped, conceptual hydrologic model is sufficient to account for hydrologic uncertainties in the modelling process. To investigate these questions, an ensemble of climate simulations are propagated through hydrologic models and then through a reservoir simulation model to delimit the range of flood protection under a wide array of climate conditions. Uncertainty in mean climate changes and internal climate variability are framed using a risk‐based methodology and are explored using a stochastic weather generator. To account for hydrologic uncertainty, two hydrologic models are considered, a conceptual, lumped parameter model and a distributed, physically based model. In the conceptual model, parameter and residual error uncertainties are quantified and propagated through the analysis using a Bayesian modelling framework. The approach is demonstrated in a case study for the Coralville Dam on the Iowa River, where recent, intense flooding has raised questions about potential impacts of climate change on flood protection adequacy. Results indicate that the uncertainty surrounding future flood risk from hydrologic modelling and internal climate variability can be of the same order of magnitude as climate change. Furthermore, statistical uncertainty in the conceptual hydrological model can capture the primary structural differences that emerge in flood damage estimates between the two hydrologic models. Copyright © 2014 John Wiley & Sons, Ltd.