2017 IEEE International Conference on Communications (ICC) 2017
DOI: 10.1109/icc.2017.7997418
|View full text |Cite
|
Sign up to set email alerts
|

Privacy-aware incentive mechanism for mobile crowd sensing

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
8
0

Year Published

2019
2019
2022
2022

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(8 citation statements)
references
References 16 publications
0
8
0
Order By: Relevance
“…In this case, the framework applies the K-means machine learning algorithm to cluster the trajectories from real-world GPS datasets and ensure the K-anonymity for high-sensitive datasets. Using the Kanonymity [128], [129], the framework can collect location information from K mobile users within a cloaking region, i.e., the region where the mobile users' exact locations are hidden [130], [131]. In [132], the use of K-anonymity is extended into a continuous network location privacy anonymity, i.e., KDT -anonymity, which not only considers the average anonymity size K, but also takes the average distance deviation D and the anonymity duration T into account.…”
Section: ) Location Information Protectionmentioning
confidence: 99%
See 1 more Smart Citation
“…In this case, the framework applies the K-means machine learning algorithm to cluster the trajectories from real-world GPS datasets and ensure the K-anonymity for high-sensitive datasets. Using the Kanonymity [128], [129], the framework can collect location information from K mobile users within a cloaking region, i.e., the region where the mobile users' exact locations are hidden [130], [131]. In [132], the use of K-anonymity is extended into a continuous network location privacy anonymity, i.e., KDT -anonymity, which not only considers the average anonymity size K, but also takes the average distance deviation D and the anonymity duration T into account.…”
Section: ) Location Information Protectionmentioning
confidence: 99%
“…In this case, the framework applies the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$K$ \end{document} -means machine learning algorithm to cluster the trajectories from real-world GPS datasets and ensure the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$K$ \end{document} -anonymity for high-sensitive datasets. Using the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$K$ \end{document} -anonymity [127] , [128] , the framework can collect location information from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$K$ \end{document} mobile users within a cloaking region, i.e., the region where the mobile users’ exact locations are hidden [129] , [130] . In [131] , the use of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$K$ \end{document} -anonymity is extended into a continuous network location privacy anonymity, i.e., \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$KDT$ \end{document} -anonymity, which not only considers the average anonymity size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$K$ \end{document} , but also takes the average distance deviation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$D$ \end{document} and the anonymity duration \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$T$ \end{document} into account.…”
Section: Open Issues and Future Research Directionsmentioning
confidence: 99%
“…where the log function is used to model the diminishing returns on FD i 's data [14]. To obtain the resulting data with enough diversity [4], the following constraint should be satisfied…”
Section: Problem Formulationmentioning
confidence: 99%
“…where µ i ∈ (0, 1] is the empirical parameter that statistically measures the data quality and the contribution of FD i [9,14], and C is the threshold given by the LD for measuring participant's contribution .…”
Section: Problem Formulationmentioning
confidence: 99%
“…Previous work by [7] provided an efficient algorithm to compute the unique Stackelberg equilibrium at which the crowdsourcer utility is maximized. The extension of this work is provided by [8], [19] to include privacy considerations and spatial coverage of the collected dataset. However, the optimization of the crowdsourcer utility in these previous works is less relevant for the case when we want to optimize the profit of several regional working units simultaneously.…”
Section: Introductionmentioning
confidence: 99%