We develop a new location spoofing detection algorithm for geo-spatial tagging and location-based services in the Internet of Things (IoT), called Enhanced Location Spoofing Detection using Audibility (ELSA) which can be implemented at the backend server without modifying existing legacy IoT systems. ELSA is based on a statistical decision theory framework and uses two-way time-of-arrival (TW-TOA) information between the user's device and the anchors. In addition to the TW-TOA information, ELSA exploits the implicit available audibility information to improve detection rates of location spoofing attacks. Given TW-TOA and audibility information, we derive the decision rule for the verification of the device's location, based on the generalized likelihood ratio test. We develop a practical threat model for delay measurements spoofing scenarios, and investigate in detail the performance of ELSA in terms of detection and false alarm rates. Our extensive simulation results on both synthetic and real-world datasets demonstrate the superior performance of ELSA compared to conventional non-audibility-aware approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.