Machine-to-machine (M2M) communication's severe power limitations challenge the interconnectivity, access management, and reliable communication of data. In densely deployed M2M networks, controlling and aggregating the generated data is critical. We propose an energy efficient data aggregation scheme for a hierarchical M2M network. We develop a coverage probability-based optimal data aggregation scheme for M2M devices to minimize the average total energy expenditure per unit area per unit time or simply the energy density of an M2M communication network. Our analysis exposes the key tradeoffs between the energy density of the M2M network and the coverage characteristics for successive and parallel transmission schemes that can be either half-duplex or full-duplex. Comparing the rate and energy performances of the transmission models, we observe that successive mode and half-duplex parallel mode have better coverage characteristics compared to full-duplex parallel scheme. Simulation results show that the uplink coverage characteristics dominate the trend of the energy consumption for both successive and parallel schemes.2 Later in Sect. V, in evaluating the SIR-based coverage probability, we also incorporate the small-scale fading into the analysis that is assumed to be independent and identically distributed (iid) with unit mean. Therefore, incorporating fading yields the same average energy analysis. To keep the notation simple, we do not incorporate fading in Sects. II, III and IV.3 Na (random variable) denotes the number of devices in the Voronoi cell of a typical aggregator, and is detailed in Sect. III. 4 The interference is due to simultaneously active aggregator cells. Users within each Voronoi cell are assumed to use TDMA for access, and at a particular time slot, there is only one active transmitting device in each cell. For the sequential mode, the interference is due to the active transmitters outside the typical cell. On the other hand, for the parallel transmission mode, since all the stages are simultaneously active, there is both intra cell and out of cell interferences., which is detailed in Sect. VI. 5 In Sect. III, we will motivate the choice of γ < 0.5 in our setup.