Short-Term Electricity Load Forecasting (STELF) through Data Analytics (DA) is an emerging and active research area. Forecasting about electricity load and price provides future trends and patterns of consumption. There is a loss in generation and use of electricity. So, multiple strategies are used to solve the aforementioned problems. Day-ahead electricity price and load forecasting are beneficial for both suppliers and consumers. In this paper, Deep Learning (DL) and data mining techniques are used for electricity load and price forecasting. XG-Boost (XGB), Decision Tree (DT), Recursive Feature Elimination (RFE) and Random Forest (RF) are used for feature selection and feature extraction. Enhanced Convolutional Neural Network (ECNN) and Enhanced Support Vector Regression (ESVR) are used as classifiers. Grid Search (GS) is used for tuning of the parameters of classifiers to increase their performance. The risk of over-fitting is mitigated by adding multiple layers in ECNN. Finally, the proposed models are compared with different benchmark schemes for stability analysis. The performance metrics MSE, RMSE, MAE, and MAPE are used to evaluate the performance of the proposed models. The experimental results show that the proposed models outperformed other benchmark schemes. ECNN performed well with threshold 0.08 for load forecasting. While ESVR performed better with threshold value 0.15 for price forecasting. ECNN achieved almost 2% better accuracy than CNN. Furthermore, ESVR achieved almost 1% better accuracy than the existing scheme (SVR).
In this paper, a blockchain-based data sharing and access control system is proposed, for communication between the Internet of Things (IoT) devices. The proposed system is intended to overcome the issues related to trust and authentication for access control in IoT networks. Moreover, the objectives of the system are to achieve trustfulness, authorization, and authentication for data sharing in IoT networks. Multiple smart contracts such as Access Control Contract (ACC), Register Contract (RC), and Judge Contract (JC) are used to provide efficient access control management. Where ACC manages overall access control of the system, and RC is used to authenticate users in the system, JC implements the behavior judging method for detecting misbehavior of a subject (i.e., user). After the misbehavior detection, a penalty is defined for that subject. Several permission levels are set for IoT devices’ users to share services with others. In the end, performance of the proposed system is analyzed by calculating cost consumption rate of smart contracts and their functions. A comparison is made between existing and proposed systems. Results show that the proposed system is efficient in terms of cost. The overall execution cost of the system is 6,900,000 gas units and the transaction cost is 5,200,000 gas units.
Wireless Sensor Networks (WSNs) with their dynamic applications gained a tremendous attention of researchers. Constant monitoring of critical situations attracted researchers to utilize WSNs at vast platforms. The main focus in WSNs is to enhance network life-time as much as one could, for efficient and optimal utilization of resources. Different approaches based upon clustering are proposed for optimum functionality. Network life-time is always related with energy of sensor nodes deployed at remote areas for constant and fault tolerant monitoring. In this work, we propose Quadrature-LEACH (Q-LEACH) for homogenous networks which enhances stability period, network life-time and throughput quiet significantly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.