We have studied the expression of isoforms of CD45 (leukocyte common antigen, LCA) among T cell precursors using the organ culture system of Jenkinson et al. (Eur. J. Immunol. 1982. 12: 583). These experiments show that cells capable of recolonizing alymphoid embryonic thymic lobes in vitro can be detected in the thymus of fetal and adult mice and are enriched when thymocytes are depleted of cells bearing CD4 or CD8. These data are consistent with results from in vivo experiments of Fowlkes et al. (J. Exp. Med. 1985. 162: 802) indicating that T cell precursors lie within the double-negative (CD4-CD8-) compartment. No precursors were detected among the reciprocal populations of cells bearing CD4 and/or CD8 (single and double positives). Double-negative cell fractions were then divided on the basis of reactivity with monoclonal antibodies RA3-2C2 and RA3-3A1. These antibodies recognize the high molecular weight species of the LCA or, more accurately, a product defined by exon A of the CD45 gene. Recolonizing cells were found predominantly in the CD45RA+ (RA3-2C2 and RA3-3A1 reactive) fraction of double-negative thymocytes; CD45RA- enriched populations had increased efficiency of recolonization and CD45RA- depleted populations had decreased ability to recolonize as compared with the whole CD4-CD8- fraction. To clarify whether progenitors enriched in the CD45RA+ fraction were capable of giving rise to mature CD4+, CD8+ and CD4+ CD8+ cells, we analyzed the progeny of lobes seeded with CD4-CD8-CD45RA+ fractions. After 7-9 days in organ culture the proportion of CD4+, CD8+ or CD4+ CD8+ cells had increased to 35.2%, 18.6% and 23.7%, respectively (mean of five experiments), indicating that progenitors among the CD45RA+ population were indeed multipotent. These results suggest that the majority of T stem cells in the thymus are among thymocytes that express the CD45RA molecule, an hypothesis supported by our finding that removal of CD45RA-expressing cells (using complement and antibody) eliminated recolonizing capacity of thymic cell fractions.