In this chapter, we present a detailed introduction to the factors which influence laser powder bed fusion (LPBF) on oxide ceramics. These factors can be in general divided in three main categories: laser-related factors (wavelength, power, scanning speed, hatch distance, scan pattern, beam diameter, etc.), powder-and material-related factors (flowability, size distribution, shape, powder deposition, thickness of deposited layers, etc.), and other factors (pre-or post-processing, inert gas atmosphere, etc.). The process parameters directly affect the amount of energy delivered to the surface of the thin layer and the energy density absorbed by the powders; therefore, decide the physical and mechanical properties of the built parts, such as relative density, porosity, surface roughness, dimensional accuracy, strength, etc. The parameter-property relation is hence reviewed for the most studied oxide ceramic materials, including families from alumina, silica, and some ceramic mixtures. Among those parameters, reducing temperature gradient which decreases the thermal stresses is one of the key factors to improve the ceramic quality. Although realizing crack-free ceramics combined with a smooth surface is still a major challenge, through optimizing the parameters, it is possible for LPBF processed ceramic parts to achieve properties close to those of conventionally produced ceramics.