The degradation of lignocellulosic wastes such as paddy straw, sorghum stalk, and banana pseudostem was investigated during solid-state fermentation by edible mushrooms Pleurotus eous and Lentinus connotus. Biological efficiency of 55-65% was observed in paddy straw followed by sorghum stalk (45%) and banana pseudostem (33%) for both fungal species. The activity of extracellular enzymes, namely cellulase, polyphenol oxidase, and laccase, together with the content of cellulose, lignin, and phenols, was studied in spent substrates on seventh, 17th, and 27th days of spawning, and these values were used as indicators of the extent of lignocellulosic degradation by mushroom. Both the mushroom species proved to be efficient degraders of lignocellulosic biomass of paddy straw and sorghum stalk, and the extent of cellulose degradation was 63-72% of dry weight (d.w.), and lignin degradation was 23-30% of the d.w. In banana pseudostem, the extent of the degradation was observed to be only 15-22% of the d.w. for both lignin and cellulose. Preferential removal of cellulose during initial growth period and delayed degradation of lignin were observed in all three substrates. This is associated with decrease in activity of cellulase and polyphenol oxidase and increase in laccase activity with spawn aging in spent substrates. Thus, bioconversion of lignocellulosic biomass by P. eous and L. connotus offers a promising way to convert low-quality biomass into an improved human food.