Tumor development is initiated by an accumulation of numerous genetic and epigenetic alterations that promote tumor initiation, invasion and metastasis. Astrocyte elevated gene-1 [AEG-1; also known as Metadherin (MTDH) and Lysine-rich CEACAM1 co-isolated (LYRIC)] has emerged in recent years as a potentially crucial mediator of tumor malignancy, and a key converging point of a complex network of oncogenic signaling pathways. AEG-1/MTDH has a multifunctional role in tumor development that has been found to be involved in the following signaling cascades: i) The Ha-Ras and PI3K/Akt pathways; ii) the nuclear factor-κB signaling pathway; iii) the ERK/mitogen-activated protein kinase and Wnt/β-catenin pathways; and iv) the Aurora-A kinase signaling pathway. Studies have established that AEG-1/MTDH is crucial in tumor progression, including transformation, the evasion of apoptosis, invasion, angiogenesis and metastasis. In addition, recent clinical studies have convincingly associated AEG-1/MTDH with tumor progression and poor prognosis in a number of cancer types, including hepatocellular, esophageal squamous cell, gallbladder and renal cell carcinomas, breast, non-small cell lung, prostate, gastric and colorectal cancers, and glioma, melanoma, neuroblastoma and osteosarcoma. AEG-1/MTDH may be used as a biomarker to identify subgroups of patients who require more intensive treatments and who are likely to benefit from AEG-1/MTDH-targeted therapies. The therapeutic targeting of AEG-1/MTDH may simultaneously block metastasis, suppress tumor growth and enhance the efficacy of chemotherapeutic treatments.