Goal: In-plant logistics activities are important for increasing the performance of the supply chains, so our research aims to study the application of Six Sigma tools for in-plant logistics activities in the cement industry. Our research contributes to the literature by developing a real case study that provides insights into the practical implementation of continuous improvement programs.
Design / Methodology / Approach: This study uses the Industrial Case Study in a large cement plant, a branch of a multinational business group, in Brazil’s Middle-west region. This research applies Define, Measure, Analyze, Improve, Control (DMAIC) guidelines with Statistical Process Control tools for solving a real problem for out-control processes. From this, we propose an improvement plan to correct flaws in the in-plant cement loading and unloading process (in-plant logistics).
Results: The results suggest that based on the control chart, the studied in-plant logistics activities were out of control. These processes exhibit a high variability, between 3σ and 5σ, presenting 26 problems with causes related to machine, measure, and human resources. An out-control action plan was proposed aiming for improvements to solve these problems.
Limitations of the investigation: On the out-control action plan, this study presents an improvement proposal. The action plan does not fully develop the control step for DMAIC.
Practical implications: Managers in the cement industry can use our case for insights and learning about improvement programs, especially for the in-plant logistics activities addressing processing-based manufacturing environments.
Originality / Value: Our research contributes a real case study that applies the DMAIC methodology, with a specific focus on in-plant logistics activities. By developing the application of improvement programs within the cement industry, our study offers practical insights into how processing industries can effectively implement such programs.