Proceedings of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education 2018
DOI: 10.1145/3197091.3197101
|View full text |Cite
|
Sign up to set email alerts
|

Programming: predicting student success early in CS1. a re-validation and replication study

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
32
0
2

Year Published

2019
2019
2023
2023

Publication Types

Select...
3
2
2

Relationship

0
7

Authors

Journals

citations
Cited by 52 publications
(34 citation statements)
references
References 33 publications
0
32
0
2
Order By: Relevance
“…Recently, artificial intelligence and machine learning approaches -especially in the context of a wider higher education push on learning analytics -have been widely applied in success / retention prediction (e.g. [1,7,22,28]). However, there is limited published work related to the prediction of a computer science student's overall results and attendance based on measures of positive psychology, which is the focus of this work.…”
Section: Introductionmentioning
confidence: 99%
See 2 more Smart Citations
“…Recently, artificial intelligence and machine learning approaches -especially in the context of a wider higher education push on learning analytics -have been widely applied in success / retention prediction (e.g. [1,7,22,28]). However, there is limited published work related to the prediction of a computer science student's overall results and attendance based on measures of positive psychology, which is the focus of this work.…”
Section: Introductionmentioning
confidence: 99%
“…In the domain of CS, threshold concepts have be argued to be largely related to programming [34], leading to research related to success seen through the lens of programming (commonly fundamental programming or "CS1"). This has been productive but can been argued to leave a gap in our understanding of factors that can be predictors of success [7,22,28]. In particular, in the case of troublesome knowledge, learners may need to perform in the face of adversity.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Uma outra abordagem utilizou uma ARL mesclada ao teste de normalidade Shapiro-Wilks, testando o quão preditor um conjunto de 50 variáveis pode ser ao tentar identificar os alunos em situação de risco de reprovação, mostrando qual variável tem maior desempenho em predizer o resultado final do aluno [Watson et al 2014]. Já em [Quille and Bergin 2018], foi apresentado o Modelo PreSS, criado há 20 anos, que teria a capacidade de identificar os alunos em situação de risco de reprovação (também utilizando ARL).…”
Section: Resultados E Discussõesunclassified
“…Muitos métodos de identificação já foram propostos na literatura, como o modelo de ARL (Análise de Regressão Linear) utilizando dados coletados da IpC (Instrução pelos Colegas) para previsão do desempenho do exame final [Liao et al 2016]. Uma outra propostaé o modelo PreSS que usa fatores comparativos -como a eficiência de programação, a habilidade matemática e as horas dedicadas em exercícios -para auxiliar a identificação do alunos em risco de reprovação [Quille and Bergin 2018]. Existem até ferramentas capazes de realizarem capturas de telas, que exibem código-fonte, para auxiliar na identificação das dificuldades apresentadas pelos alunos usando aprendizado de máquina [Ahadi 2016].…”
Section: Introductionunclassified