Analysis of low initial aspect ratio direct-drive target designs is carried out by varying the implosion velocity and the fuel mass. Starting from two different spherical targets with a given 300 /xg-DT mass, optimization of laser pulse and drive power allows to obtain a set of target seeds referenced by their peak implosion velocities and initial aspect ratio (A = 3 and A = 5). Self-ignition is achieved with higher implosion velocity for A = 5-design than for A = 3-design. Then, rescaling is done to extend the set of designs to a huge amount of mass, peak kinetic energies and peak areal densities. Self-ignition kinetic energy threshold Ek is characterized by a dependance of Ek ~ v& with ^S-values which depart from self-ignition models. Nevertheless, self-ignition energy is seen lower for smaller initial aspect ratio. An analysis of Two-Plasmons Decay threshold and Rayleigh-Taylor instability e-folding is carried out and it is shown that two-plasmon decay threshold is always overpassed for all designs. The hydrodynamic stability analysis is performed by embedded models to deal with linear and non-linear regime. It is found that the A = 5-designs are always at the limit of disruption of the shell.