2003
DOI: 10.1080/00207390310001606660
|View full text |Cite
|
Sign up to set email alerts
|

Projecting rate of change in the context of motion onto the context of money

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

1
18
0
3

Year Published

2008
2008
2019
2019

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 23 publications
(22 citation statements)
references
References 3 publications
1
18
0
3
Order By: Relevance
“…''The shift from 'model of' to 'model for' concurs with a shift in the way a student thinks about the model, from models that derive their meaning from the modelled context situation, to thinking about mathematical relations'' (Gravemeijer and Doorman 1999, p. 119). Wilhelm and Confrey (2003) and Simpson et al (2006) studied students who explored computer simulations of real-world rate-of-change contexts, where students learned to link their 'model of' the real-world context to graphs of linear functions. Doorman (2002), who studied older students, proposed that an 'emergent model' can be seen in calculus where ''graphs of discrete functions come to the fore as models of situations in which velocity and distance vary, while these graphs later develop into models for formal mathematical reasoning about calculus'' (p. 109).…”
Section: Conceptual Frameworkmentioning
confidence: 99%
See 2 more Smart Citations
“…''The shift from 'model of' to 'model for' concurs with a shift in the way a student thinks about the model, from models that derive their meaning from the modelled context situation, to thinking about mathematical relations'' (Gravemeijer and Doorman 1999, p. 119). Wilhelm and Confrey (2003) and Simpson et al (2006) studied students who explored computer simulations of real-world rate-of-change contexts, where students learned to link their 'model of' the real-world context to graphs of linear functions. Doorman (2002), who studied older students, proposed that an 'emergent model' can be seen in calculus where ''graphs of discrete functions come to the fore as models of situations in which velocity and distance vary, while these graphs later develop into models for formal mathematical reasoning about calculus'' (p. 109).…”
Section: Conceptual Frameworkmentioning
confidence: 99%
“…For example: Wilhelm and Confrey (2003) used motion detectors and Interactive Banking software to develop students' understanding of rate in the contexts of motion and banking. They found that ''using multiple rate of change contexts allowed the learners the opportunity to see the 'like' in the contextually unlike situation, enabling them to project these concepts into novel situations'' (p. 887).…”
Section: Computer Simulationmentioning
confidence: 99%
See 1 more Smart Citation
“…Contextualization with realistic or familiar content is thought to promote problem solving because it supports individuals in understanding problems and in integrating prior knowledge with the problems. Across a variety of mathematical domains, researchers have found that contextualizing mathematics problems can foster performance and learning (e.g., Carraher, Schliemann, Brizuela, & Earnest, 2006;Koedinger et al, 2008;Wilhelm & Confrey, 2003).…”
mentioning
confidence: 99%
“…Bu durumun öğrencilerin değişim oranı kavramını yine kovaryasyonel olarak değişen iki değişkenin farklarının oranı olarak görememelerinden kaynaklandığı söylenebilir. Öğretmen ve öğrencilerde ortaya çıkan bir diğer zorluk ise değişim oranı kavramını sadece kinematik (hız-zaman) bağlamında görmüş olmaları ve başka bağlamlarda anlamlandıramamalarıdır (örn., Herbert & Pierce, 2008, 2012Wilhelm & Confrey, 2003;Zandieh & Knapp, 2006). Değişim oranı kavramıyla ilgili öğrenci ve öğretmen zorluklarının muhtemel kaynakları olarak kavramın ders kitaplarında ve öğretim programlarında yeterince vurgulanmaması (Bingölbali, 2008), kavramın kinematik gibi kısıtlı bağlamlarda sunuluyor olması (Gravemeijer & Doorman, 1999;Thompson, 1994b;Zandieh & Knapp, 2006) ve kovaryasyonel düşünme, eğim ve fonksiyon gibi bazı temel kavramlarla ilgili bilgi eksikliği (Herbert & Pierce, 2008) gösteriliyor olmakla birlikte, ilgili alanyazında öğrenci ve öğretmenlerin değişim oranı kavramını nasıl algıladıkları ve kavramı anlamlandırmada yaşadıkları zorlukları muhtemel sebepleri ile birlikte daha farklı açılardan ortaya koyacak çalışmalara ihtiyaç duyulduğu da vurgulanmaktadır (örn., Ärleback, Doerr & O'Neil, 2013;Bezuidenhout, 1998;Herbert & Pierce, 2008).…”
Section: Grafik Gösterimiunclassified