A detailed optical characterization by means of micro Raman and cathodoluminescence spectroscopy of catalyst-free ZnO nanorods grown by atmospheric-metal organic chemical vapour deposition has been carried out. This characterization has allowed correlating the growth conditions, in particular the precursors partial-pressures and growth time, with the optical properties of nanorods. It has been shown that a high Zn supersaturation can favor the incorporation of nonradiative recombination centers, which can tentatively be associated with Zn I -related defects. Characterization of individual nanorods has evidenced that Zn I -related defects have a tendency to accumulate in the tip part of the nanorods, which present dark cathodoluminescence contrast with respect to the nanorods bottom. The effect of a ZnO buffer layer on the properties of the nanorods has been also investigated, showing that the buffer layer improves the luminescence efficiency of the ZnO nanorods, revealing a significant reduction of the concentration of nonradiative recombination centers. V C 2013 AIP Publishing LLC [http://dx.