Individuals time as if using a stopwatch that can be stopped or reset on command. Here, we review behavioural and neurobiological data supporting the time-sharing hypothesis that perceived time depends on the attentional and memory resources allocated to the timing process. Neuroimaging studies in humans suggest that timekeeping tasks engage brain circuits typically involved in attention and working memory. Behavioural, pharmacological, lesion and electrophysiological studies in lower animals support this time-sharing hypothesis. When subjects attend to a second task, or when intruder events are presented, estimated durations are shorter, presumably due to resources being taken away from timing. Here, we extend the time-sharing hypothesis by proposing that resource reallocation is proportional to the perceived contrast, both in temporal and non-temporal features, between intruders and the timed events. New findings support this extension by showing that the effect of an intruder event is dependent on the relative duration of the intruder to the intertrial interval. The conclusion is that the brain circuits engaged by timekeeping comprise not only those primarily involved in time accumulation, but also those involved in the maintenance of attentional and memory resources for timing, and in the monitoring and reallocation of those resources among tasks.