Currently, biophysical studies are of great interest, the results of which are important for development of a method for diagnosis of the cells and tissue condition to be used in clinical practice. The study was aimed to use a non-invasive optical method (Raman spectroscopy) for assessment of changes in the composition and conformation of the molecules of the patient’s mandibular cells and tissues. This approach was proposed to increase the informativeness and effectiveness of studying the composition of autografts harvested for augmentation of alveolar processes with bone tissue deficiency (elective bone grafting). In the course of the study the bone tissue samples obtained from three patients aged 51–73 (two men and one woman) were assessed. Raman signals were detected, indicating the presence of phosphate groups and carbonate ions (such as СО3–2) of the inorganic bone components. Raman bands indicating the presence of collagen, red blood cell hemoglobin, proteins (C–N bonds), lipids (С–Н groups of fatty acids and phosphate groups of phospholipids), as well as their OH groups may be considered the markers of periosteum tissue. The general possibility was suggested of studying single cells of autografts using the markers, indicating the presence of collagen, hemoglobin, proteins, lipids (С–Н groups of fatty acids of lipids; phosphate groups of phospholipids), and their OH groups. According to the authors, the results obtained can provide a basis for development of the new method for diagnosis of autograft bone using the combination of Raman spectroscopy and light guides.