In order to clarify the protective mechanism of sodium molybdate against the acute toxicity of cadmium chloride in rat, the effect of in vivo sodium molybdate pretreatment on the cytotoxic action of cadmium in isolated hepatocytes was studied. The cytosolic pH of hepatocytes isolated from untreated rats immediately decreased with incubation in either neutral Hank's balanced salt solution (HBS), pH 7.4, containing 5 microM cadmium chloride minimum or acidic HBS (pH 7.1, 6.8, 6.5, and 6.2). The presence of 5 microM cadmium in HBS adjusted to pH 7.1 aggravated cytosolic acidification induced by the acidic medium alone. Cell viability of hepatocytes incubated in HBS at pH 6.2 was significantly reduced as compared to that of control cells in HBS at pH 7.4, but the presence of cadmium in the acidic HBS had no aggravating action against such a toxic action of the acidic medium although cellular uptake of the metal in the medium increased, as compared to that in HBS at pH 7.4. Molybdenum pretreatment alleviated cytoplasmic acidification induced by the treatment with HBS at pH 7.4 or 7.1 containing cadmium or by extracellular acid load without cadmium. This pretreatment also prevented the loss of cell viability induced by the treatment with HBS at pH 6.2 but could not attenuate that when cadmium was present in the medium. These facts suggest that molybdenum pretreatment alleviated the acute toxicity of cadmium in rat by preventing cytoplasmic acidification caused by the harmful metal.