This work aimed at investigating the potential modulatory effects and mechanisms of crocin against CCl4 -induced nephrotoxicity. Forty male rats were allocated for three weeks treatment with corn oil, CCl4 , crocin, or crocin plus CCl4 . Crocin effectively mitigated CCl4 -induced kidney injury as evidenced by amelioration of alterations in kidney histopathology, renal weight/100 g body weight ratio and kidney functions. Crocin modulated CCl4 -induced disturbance of kidney cytochrom-P450 subfamily 2E1 and glutathione-S-transferase. The attenuation of crocin to kidney injury was also associated with suppression of oxidative stress via reduction of lipid peroxides along with induction of renal glutathione content and enhancement of superoxide dismutase, glutathione peroxidase, and catalase activities. Crocin mitigated CCl4 -induced elevation of the renal levels of tumor necrosis factor-alpha, interleukin-6, prostaglandin E2, and active caspases-3. Collectively, crocin alleviated CCl4 -induced renal damage via modulation of kidney metabolizing enzymes, suppression of oxidative stress, inhibition of inflammatory cytokines, PGE2, and active caspase3 in kidney.