ResumenEl problema de Bin Packing (BPP) es NP-duro, por lo que un método exacto para resolver instancias del BPP requiere un gran número de variables y demasiado tiempo de ejecución. En este trabajo se propone una nueva estrategia heurística para resolver instancias del BPP en donde se garantiza la solución óptima. La estrategia propuesta incluye el uso de un nuevo modelo exacto basado en arcos de flujo. En el modelo propuesto, el número de variables se redujo asignando objetos en contenedores. Adicionalmente se incluye una heurística que mediante el preprocesado de la instancia permite reducir su tamaño y con ello el espacio de búsqueda del algoritmo de solución. Para validar el enfoque propuesto, se realizaron experimentos usando los conjuntos de prueba hard28, 53nirup, bin1data, uniform, triplets y subconjuntos de otras instancias, todos ellos conocidos en el estado del arte. Los resultados muestran que empleando nuestro enfoque es posible encontrar la solución óptima de todas las instancias de prueba. Además, el tiempo de ejecución se redujo en relación con lo reportado por el modelo basado en arcos de flujo. Las reducciones de tiempo fueron de 19.7 y 43% para los conjuntos 53nirup y hard28, respectivamente.
IntroducciónEl problema de Bin Packing se puede formular de la siguiente manera: dados n objetos de tamaño w 1 , .., w n y contenedores de tamaño C, el objetivo es encontrar el menor número de contenedores en donde se coloquen todos los objetos. De acuerdo con Garey y Johnson (1979) el problema de Bin Packing (BPP) es un problema combinatorio, que pertenece a la clase de problemas NP-duros y existen problemas reales de la industria que pueden mapearse a dicho problema.Algunos investigadores dirigen sus esfuerzos hacia el desarrollo de modelos matemáticos que representen el problema, con el objetivo de obtener soluciones ópti-mas, por ejemplo, los modelos desarrollados por Valerio (1999Valerio ( , 2000 y Martello y Toth (1990). El trabajo desarrollado por Shawn (2004) es otra alternativa que propone darle solución al problema BPP realizando una modificación al modelo desarrollado para resolver el problema de la mochila multidimensional. La limitante de esta propuesta es que no resuelve convenientemente todas las instancias de los conjunto uniform y triplets (Falkenahuer, 1996). Una mejora a este trabajo se propuso por Schaus en su tesis doctoral (2009), donde mediante el uso de arcos de flujo se resuelven todas las instancias de los conjuntos uniform y triplets, además se mejoran los tiempos de cómputo presentados por Shawn.Cambazard y O'Sullivan (2010) propusieron introducir directamente en el modelo de arcos de flujo los criterios utilizados por Shawn, lo que les permitió reducir los tiempos de ejecución y resolver las instancias uniform y bin1data (Scholl et al., 1997), sin embargo, no lograron resolver de forma óptima todas las instancias de los conjuntos triplets y bin2data (Scholl et al., 1997). Alves (2012) por su parte, propuso un modelo basado en arcos de flujo, que limita el número de objetos p...