Graphene, a single atomic layer of graphitic carbon, has attracted intense
attention due to its extraordinary properties that make it a suitable material
for a wide range of technological applications. Large-area graphene films,
which are necessary for industrial applications, are typically polycrystalline,
that is, composed of single-crystalline grains of varying orientation joined by
grain boundaries. Here, we present a review of the large body of research
reported in the past few years on polycrystalline graphene. We discuss its
growth and formation, the microscopic structure of grain boundaries and their
relations to other types of topological defects such as dislocations. The
review further covers electronic transport, optical and mechanical properties
pertaining to the characterizations of grain boundaries, and applications of
polycrystalline graphene. We also discuss research, still in its infancy,
performed on other 2D materials such as transition metal dichalcogenides, and
offer perspectives for future directions of research.Comment: review article; part of focus issue "Graphene applications