The growing human population, together with the inefficient use of natural resources, has been dramatically increasing the production of food waste, which poses serious economic, environmental, and social problems. Being so, it is necessary to increase the efficiency of food consumption so as to reduce its waste and to convert the remaining residues into societal benefits. Since this biowaste is rich in polyphenols and vitamins, it could become the feedstock for the production of important value-added compounds for the pharmaceutical (e.g., food supplements) and cosmetic (e.g., creams and shampoos) industries. In this work, partition studies of one polyphenol (epicatechin) and two B-complex vitamins (cyanocobalamin and nicotinic acid) were performed in biodegradable Aqueous Two-Phase Systems (ATPS) based on ethyl lactate and on organic salts (disodium tartrate, tripotassium citrate, and trisodium citrate) at 298.15 K and 0.1 MPa. The largest partition coefficient (K) and extraction efficiency (E) were obtained for vitamin B12 (K=78.56, E=97.5%) for the longest tie line TLL=77.66% in the ATPS {ethyl lactate (1) + tripotassium citrate (2) + water (3)}. All the extractions were obtained with low biomolecule mass losses in quantification (<5%) and after a thorough study of pH influence in the UV–Vis absorbance spectra.