Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Understanding dispersal requires multiple lines of investigation, from the study of broad patterns of population connectivity to the identification of factors impacting movement at local scales. To determine the potential effects of different microhabitats on dispersal in the Long-toed Salamander (Ambystoma macrodactylum Baird, 1850), we experimentally evaluated mobility, moisture loss, and habitat choice in response to five common substrates (deciduous and coniferous leaf litter, grass, moss, and sand). Specifically, we examined differences in the efficiency with which salamanders moved across substrates when motivated to move. We then quantified moisture loss in each substrate and evaluated habitat preference. Our results point to a trade-off between substrates that are easily traversed and those that offer high protection against desiccation. Habitat choice appeared to balance these two aspects of performance, with salamanders favouring a substrate that offered both low resistance to movement and high protection against desiccation. This result was context-dependent, as preferences shifted towards wetter but less easily traversed substrates when supplemental cover objects were made available. Overall, our study highlights the potential for individuals to respond to a given substrate in ways that can both facilitate and limit dispersal and thus underscores the need to consider different aspects of individual performance and behaviour when studying population connectivity.Résumé : La compréhension de la dispersion requiert une approche à plusieurs volets, de l'étude des grands motifs de connectivité des populations à la détermination des facteurs qui influencent les déplacements à l'échelle locale. Afin de déterminer les effets potentiels de différents microhabitats sur la dispersion chez la salamandre à longs doigts (Ambystoma macrodactylum Baird, 1850), nous avons évalué expérimentalement la mobilité, la perte d'humidité et le choix de l'habitat en réaction à cinq substrats courants (litières de feuillus et de conifères, herbe, mousse et sable). Plus précisément, nous avons examiné les variations de l'efficacité avec laquelle les salamandres se déplaçaient sur différents substrats quand elles étaient motivées à le faire. Nous avons ensuite quantifié la perte d'humidité dans chaque substrat et évalué les préférences en matière d'habitat. Nos résultats semblent indiquer un compromis entre les substrats qui sont faciles à traverser et ceux qui offrent une bonne protection contre la dessiccation. Le choix de l'habitat semblait reposer sur un équilibre entre ces deux aspects de la performance, les salamandres privilégiant un substrat qui offrait tant une faible résistance au déplacement qu'une bonne protection contre la dessiccation. Ce résultat dépend du contexte, la préférence allant à des substrats plus humides, mais moins faciles à traverser quand des objets offrant un couvert additionnel étaient fournis. Globalement, l'étude fait ressortir le potentiel des individus de réagir à un substrat donné de manière aus...
Understanding dispersal requires multiple lines of investigation, from the study of broad patterns of population connectivity to the identification of factors impacting movement at local scales. To determine the potential effects of different microhabitats on dispersal in the Long-toed Salamander (Ambystoma macrodactylum Baird, 1850), we experimentally evaluated mobility, moisture loss, and habitat choice in response to five common substrates (deciduous and coniferous leaf litter, grass, moss, and sand). Specifically, we examined differences in the efficiency with which salamanders moved across substrates when motivated to move. We then quantified moisture loss in each substrate and evaluated habitat preference. Our results point to a trade-off between substrates that are easily traversed and those that offer high protection against desiccation. Habitat choice appeared to balance these two aspects of performance, with salamanders favouring a substrate that offered both low resistance to movement and high protection against desiccation. This result was context-dependent, as preferences shifted towards wetter but less easily traversed substrates when supplemental cover objects were made available. Overall, our study highlights the potential for individuals to respond to a given substrate in ways that can both facilitate and limit dispersal and thus underscores the need to consider different aspects of individual performance and behaviour when studying population connectivity.Résumé : La compréhension de la dispersion requiert une approche à plusieurs volets, de l'étude des grands motifs de connectivité des populations à la détermination des facteurs qui influencent les déplacements à l'échelle locale. Afin de déterminer les effets potentiels de différents microhabitats sur la dispersion chez la salamandre à longs doigts (Ambystoma macrodactylum Baird, 1850), nous avons évalué expérimentalement la mobilité, la perte d'humidité et le choix de l'habitat en réaction à cinq substrats courants (litières de feuillus et de conifères, herbe, mousse et sable). Plus précisément, nous avons examiné les variations de l'efficacité avec laquelle les salamandres se déplaçaient sur différents substrats quand elles étaient motivées à le faire. Nous avons ensuite quantifié la perte d'humidité dans chaque substrat et évalué les préférences en matière d'habitat. Nos résultats semblent indiquer un compromis entre les substrats qui sont faciles à traverser et ceux qui offrent une bonne protection contre la dessiccation. Le choix de l'habitat semblait reposer sur un équilibre entre ces deux aspects de la performance, les salamandres privilégiant un substrat qui offrait tant une faible résistance au déplacement qu'une bonne protection contre la dessiccation. Ce résultat dépend du contexte, la préférence allant à des substrats plus humides, mais moins faciles à traverser quand des objets offrant un couvert additionnel étaient fournis. Globalement, l'étude fait ressortir le potentiel des individus de réagir à un substrat donné de manière aus...
Animal movement and dispersal are key factors in population dynamics and support complex ecosystem processes like cross‐boundary subsidies. Juvenile dispersal is an important mechanism for many species and often involves navigation in unfamiliar habitats. For species that metamorphose, such as amphibians, this transition from aquatic to terrestrial environments involves the growth and use of new morphological traits (e.g., legs). These traits strongly impact the fundamental ability of an organism to move in novel landscapes, but innate behaviors can regulate choices that result in the realized movements expressed. By assessing the integrative role of morphology and behavior, we can improve our understanding of juvenile movement, particularly in understudied organisms like amphibians. We assessed the roles of morphological (snout‐vent length and relative leg length) and performance (maximal jump distance) traits in shaping the free movement paths, measured through fluorescent powder tracking, in three anuran species, Pacific treefrog (Hyliola regilla), Western toad (Anaxyrus boreas), and Cascades frog (Rana cascadae). We standardized the measurement of these traits to compare the relative role of species' innate differences versus physical traits in shaping movement. Innate differences, captured by species identity, were the most significant factor influencing movement paths via total movement distance and path sinuosity. Relative leg length was an important contributor but significantly interacted with species identity. Maximal jump performance, which was significantly predicted by morphological traits, was not an important factor in movement behavior relative to species identity. The importance of species identity and associated behavioral differences in realized movement provide evidence for inherent species differences being central to the dispersal and movement of these species. This behavior may stem from niche partitioning of these sympatric species, yet it also calls into question assumptions generalizing anuran movement behavior. These species‐level effects are important in framing differences as past research is applied in management planning.
Maintaining and restoring ecological connectivity will be key in helping to prevent and reverse the loss of biodiversity. Fortunately, a growing body of research conducted over the last few decades has advanced our understanding of connectivity science, which will help inform evidence‐based connectivity conservation actions. Increases in data availability and computing capacity have helped to dramatically increase our ability to model functional connectivity using more sophisticated models. Keeping track of these advances can be difficult, even for connectivity scientists and practitioners. In this article, we highlight some key advances from the past decade and outline many of the remaining challenges. We describe the efforts to increase the biological realism of connectivity models by, for example, isolating movement behaviors, population parameters, directional movements, and the effects of climate change. We also discuss considerations of when to model connectivity for focal or multiple species. Finally, we reflect on how to account for uncertainty and increase the transparency and reproducibility of connectivity research and discuss situations where decisions may require forgoing sophistication for more simple approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.