Four new methods are described for the determination of ranitidine hydrochloride (RNH) in bulk drug and in formulations employing titrimetric and spectrophotometric techniques and using potassium dichromate as the oxidimetric reagent. In titrimetry (method A), RNH is treated with a measured excess of dichromate in acid medium, and the unreacted oxidant is back titrated with iron(II) ammonium sulfate. The three spectrophotometric methods are also based on the oxidation of RNH by a known excess of dichromate under acidic conditions followed by the determination of surplus oxidant by three different reaction schemes. In one procedure (method B), the residual dichromate is treated with diphenylcarbazide and the absorbance measured at 540 nm. Calculated amount of iron(II) is added to residual dichromate and the resulting iron(III) is complexed with thiocyanate and measured at 470 nm (method C). Method D involves reduction of unreacted dichromate by a calculated amount of iron(II) and estimation of residual iron(II) as its orthophenanthroline complex after raising the pH, and measuring the absorbance at 510 nm. In all the methods, the amount of dichromate reacted corresponds to the drug content. The experimental conditions are optimized. The titrimetric procedure is applicable over 5-10 mg range. In spectrophotometric methods, Beer's law is obeyed in the ranges 5-50, 5-80, and 10-100 μg ml -1 for method B, method C, and method D, respectively. The methods were validated for accuracy, precision and recovery. The proposed methods were applied to the analysis of RNH in the tablet and the injection forms, and the results were in agreement with those obtained by the reference method.