We introduce a generalized theory of decoherence-free subspaces and subsystems (DFSs), which do not require accurate initialization. We derive a new set of conditions for the existence of DFSs within this generalized framework. By relaxing the initialization requirement we show that a DFS can tolerate arbitrarily large preparation errors. This has potentially significant implications for experiments involving DFSs, in particular for the experimental implementation, over DFSs, of the large class of quantum algorithms which can function with arbitrary input states.